Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uspgr1e | Structured version Visualization version GIF version |
Description: A simple pseudograph with one edge. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.) (Revised by AV, 21-Mar-2021.) (Proof shortened by AV, 17-Apr-2021.) |
Ref | Expression |
---|---|
uspgr1e.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uspgr1e.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
uspgr1e.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
uspgr1e.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
uspgr1e.e | ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝐵, 𝐶}〉}) |
Ref | Expression |
---|---|
uspgr1e | ⊢ (𝜑 → 𝐺 ∈ USPGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgr1e.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
2 | prex 5350 | . . . . . . 7 ⊢ {𝐵, 𝐶} ∈ V | |
3 | 2 | snid 4594 | . . . . . 6 ⊢ {𝐵, 𝐶} ∈ {{𝐵, 𝐶}} |
4 | f1sng 6741 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑋 ∧ {𝐵, 𝐶} ∈ {{𝐵, 𝐶}}) → {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{{𝐵, 𝐶}}) | |
5 | 1, 3, 4 | sylancl 585 | . . . . 5 ⊢ (𝜑 → {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{{𝐵, 𝐶}}) |
6 | uspgr1e.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
7 | uspgr1e.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
8 | 6, 7 | prssd 4752 | . . . . . . . 8 ⊢ (𝜑 → {𝐵, 𝐶} ⊆ 𝑉) |
9 | uspgr1e.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
10 | 8, 9 | sseqtrdi 3967 | . . . . . . 7 ⊢ (𝜑 → {𝐵, 𝐶} ⊆ (Vtx‘𝐺)) |
11 | 2 | elpw 4534 | . . . . . . 7 ⊢ ({𝐵, 𝐶} ∈ 𝒫 (Vtx‘𝐺) ↔ {𝐵, 𝐶} ⊆ (Vtx‘𝐺)) |
12 | 10, 11 | sylibr 233 | . . . . . 6 ⊢ (𝜑 → {𝐵, 𝐶} ∈ 𝒫 (Vtx‘𝐺)) |
13 | 12, 6 | upgr1elem 27385 | . . . . 5 ⊢ (𝜑 → {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
14 | f1ss 6660 | . . . . 5 ⊢ (({〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{{𝐵, 𝐶}} ∧ {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) → {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
15 | 5, 13, 14 | syl2anc 583 | . . . 4 ⊢ (𝜑 → {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
16 | 2 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → {𝐵, 𝐶} ∈ V) |
17 | 16, 6 | upgr1elem 27385 | . . . . . 6 ⊢ (𝜑 → {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (V ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
18 | f1ss 6660 | . . . . . 6 ⊢ (({〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{{𝐵, 𝐶}} ∧ {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (V ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) → {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{𝑥 ∈ (V ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
19 | 5, 17, 18 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{𝑥 ∈ (V ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
20 | f1dm 6658 | . . . . 5 ⊢ ({〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{𝑥 ∈ (V ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → dom {〈𝐴, {𝐵, 𝐶}〉} = {𝐴}) | |
21 | f1eq2 6650 | . . . . 5 ⊢ (dom {〈𝐴, {𝐵, 𝐶}〉} = {𝐴} → ({〈𝐴, {𝐵, 𝐶}〉}:dom {〈𝐴, {𝐵, 𝐶}〉}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) | |
22 | 19, 20, 21 | 3syl 18 | . . . 4 ⊢ (𝜑 → ({〈𝐴, {𝐵, 𝐶}〉}:dom {〈𝐴, {𝐵, 𝐶}〉}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
23 | 15, 22 | mpbird 256 | . . 3 ⊢ (𝜑 → {〈𝐴, {𝐵, 𝐶}〉}:dom {〈𝐴, {𝐵, 𝐶}〉}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
24 | uspgr1e.e | . . . 4 ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝐵, 𝐶}〉}) | |
25 | 24 | dmeqd 5803 | . . . 4 ⊢ (𝜑 → dom (iEdg‘𝐺) = dom {〈𝐴, {𝐵, 𝐶}〉}) |
26 | eqidd 2739 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} = {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
27 | 24, 25, 26 | f1eq123d 6692 | . . 3 ⊢ (𝜑 → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ {〈𝐴, {𝐵, 𝐶}〉}:dom {〈𝐴, {𝐵, 𝐶}〉}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
28 | 23, 27 | mpbird 256 | . 2 ⊢ (𝜑 → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
29 | 9 | 1vgrex 27275 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐺 ∈ V) |
30 | eqid 2738 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
31 | eqid 2738 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
32 | 30, 31 | isuspgr 27425 | . . 3 ⊢ (𝐺 ∈ V → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
33 | 6, 29, 32 | 3syl 18 | . 2 ⊢ (𝜑 → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
34 | 28, 33 | mpbird 256 | 1 ⊢ (𝜑 → 𝐺 ∈ USPGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 ∖ cdif 3880 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 {csn 4558 {cpr 4560 〈cop 4564 class class class wbr 5070 dom cdm 5580 –1-1→wf1 6415 ‘cfv 6418 ≤ cle 10941 2c2 11958 ♯chash 13972 Vtxcvtx 27269 iEdgciedg 27270 USPGraphcuspgr 27421 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-fz 13169 df-hash 13973 df-uspgr 27423 |
This theorem is referenced by: usgr1e 27515 uspgr1eop 27517 1loopgruspgr 27770 |
Copyright terms: Public domain | W3C validator |