| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uspgr1e | Structured version Visualization version GIF version | ||
| Description: A simple pseudograph with one edge. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.) (Revised by AV, 21-Mar-2021.) (Proof shortened by AV, 17-Apr-2021.) |
| Ref | Expression |
|---|---|
| uspgr1e.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| uspgr1e.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| uspgr1e.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| uspgr1e.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| uspgr1e.e | ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝐵, 𝐶}〉}) |
| Ref | Expression |
|---|---|
| uspgr1e | ⊢ (𝜑 → 𝐺 ∈ USPGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgr1e.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 2 | prex 5379 | . . . . . . 7 ⊢ {𝐵, 𝐶} ∈ V | |
| 3 | 2 | snid 4616 | . . . . . 6 ⊢ {𝐵, 𝐶} ∈ {{𝐵, 𝐶}} |
| 4 | f1sng 6810 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑋 ∧ {𝐵, 𝐶} ∈ {{𝐵, 𝐶}}) → {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{{𝐵, 𝐶}}) | |
| 5 | 1, 3, 4 | sylancl 586 | . . . . 5 ⊢ (𝜑 → {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{{𝐵, 𝐶}}) |
| 6 | uspgr1e.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 7 | uspgr1e.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 8 | 6, 7 | prssd 4776 | . . . . . . . 8 ⊢ (𝜑 → {𝐵, 𝐶} ⊆ 𝑉) |
| 9 | uspgr1e.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 10 | 8, 9 | sseqtrdi 3978 | . . . . . . 7 ⊢ (𝜑 → {𝐵, 𝐶} ⊆ (Vtx‘𝐺)) |
| 11 | 2 | elpw 4557 | . . . . . . 7 ⊢ ({𝐵, 𝐶} ∈ 𝒫 (Vtx‘𝐺) ↔ {𝐵, 𝐶} ⊆ (Vtx‘𝐺)) |
| 12 | 10, 11 | sylibr 234 | . . . . . 6 ⊢ (𝜑 → {𝐵, 𝐶} ∈ 𝒫 (Vtx‘𝐺)) |
| 13 | 12, 6 | upgr1elem 29076 | . . . . 5 ⊢ (𝜑 → {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 14 | f1ss 6729 | . . . . 5 ⊢ (({〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{{𝐵, 𝐶}} ∧ {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) → {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
| 15 | 5, 13, 14 | syl2anc 584 | . . . 4 ⊢ (𝜑 → {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 16 | 2 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → {𝐵, 𝐶} ∈ V) |
| 17 | 16, 6 | upgr1elem 29076 | . . . . . 6 ⊢ (𝜑 → {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (V ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 18 | f1ss 6729 | . . . . . 6 ⊢ (({〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{{𝐵, 𝐶}} ∧ {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (V ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) → {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{𝑥 ∈ (V ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
| 19 | 5, 17, 18 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{𝑥 ∈ (V ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 20 | f1dm 6728 | . . . . 5 ⊢ ({〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{𝑥 ∈ (V ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → dom {〈𝐴, {𝐵, 𝐶}〉} = {𝐴}) | |
| 21 | f1eq2 6720 | . . . . 5 ⊢ (dom {〈𝐴, {𝐵, 𝐶}〉} = {𝐴} → ({〈𝐴, {𝐵, 𝐶}〉}:dom {〈𝐴, {𝐵, 𝐶}〉}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) | |
| 22 | 19, 20, 21 | 3syl 18 | . . . 4 ⊢ (𝜑 → ({〈𝐴, {𝐵, 𝐶}〉}:dom {〈𝐴, {𝐵, 𝐶}〉}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 23 | 15, 22 | mpbird 257 | . . 3 ⊢ (𝜑 → {〈𝐴, {𝐵, 𝐶}〉}:dom {〈𝐴, {𝐵, 𝐶}〉}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 24 | uspgr1e.e | . . . 4 ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝐵, 𝐶}〉}) | |
| 25 | 24 | dmeqd 5852 | . . . 4 ⊢ (𝜑 → dom (iEdg‘𝐺) = dom {〈𝐴, {𝐵, 𝐶}〉}) |
| 26 | eqidd 2730 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} = {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
| 27 | 24, 25, 26 | f1eq123d 6760 | . . 3 ⊢ (𝜑 → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ {〈𝐴, {𝐵, 𝐶}〉}:dom {〈𝐴, {𝐵, 𝐶}〉}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 28 | 23, 27 | mpbird 257 | . 2 ⊢ (𝜑 → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 29 | 9 | 1vgrex 28966 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐺 ∈ V) |
| 30 | eqid 2729 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 31 | eqid 2729 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 32 | 30, 31 | isuspgr 29116 | . . 3 ⊢ (𝐺 ∈ V → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 33 | 6, 29, 32 | 3syl 18 | . 2 ⊢ (𝜑 → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 34 | 28, 33 | mpbird 257 | 1 ⊢ (𝜑 → 𝐺 ∈ USPGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3396 Vcvv 3438 ∖ cdif 3902 ⊆ wss 3905 ∅c0 4286 𝒫 cpw 4553 {csn 4579 {cpr 4581 〈cop 4585 class class class wbr 5095 dom cdm 5623 –1-1→wf1 6483 ‘cfv 6486 ≤ cle 11169 2c2 12202 ♯chash 14256 Vtxcvtx 28960 iEdgciedg 28961 USPGraphcuspgr 29112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-n0 12404 df-xnn0 12477 df-z 12491 df-uz 12755 df-fz 13430 df-hash 14257 df-uspgr 29114 |
| This theorem is referenced by: usgr1e 29209 uspgr1eop 29211 1loopgruspgr 29465 |
| Copyright terms: Public domain | W3C validator |