MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgr1e Structured version   Visualization version   GIF version

Theorem uspgr1e 26478
Description: A simple pseudograph with one edge. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.) (Revised by AV, 21-Mar-2021.) (Proof shortened by AV, 17-Apr-2021.)
Hypotheses
Ref Expression
uspgr1e.v 𝑉 = (Vtx‘𝐺)
uspgr1e.a (𝜑𝐴𝑋)
uspgr1e.b (𝜑𝐵𝑉)
uspgr1e.c (𝜑𝐶𝑉)
uspgr1e.e (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})
Assertion
Ref Expression
uspgr1e (𝜑𝐺 ∈ USPGraph)

Proof of Theorem uspgr1e
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uspgr1e.a . . . . . 6 (𝜑𝐴𝑋)
2 prex 5100 . . . . . . 7 {𝐵, 𝐶} ∈ V
32snid 4400 . . . . . 6 {𝐵, 𝐶} ∈ {{𝐵, 𝐶}}
4 f1sng 6397 . . . . . 6 ((𝐴𝑋 ∧ {𝐵, 𝐶} ∈ {{𝐵, 𝐶}}) → {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{{𝐵, 𝐶}})
51, 3, 4sylancl 581 . . . . 5 (𝜑 → {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{{𝐵, 𝐶}})
6 uspgr1e.b . . . . . . . . 9 (𝜑𝐵𝑉)
7 uspgr1e.c . . . . . . . . 9 (𝜑𝐶𝑉)
86, 7prssd 4541 . . . . . . . 8 (𝜑 → {𝐵, 𝐶} ⊆ 𝑉)
9 uspgr1e.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
108, 9syl6sseq 3847 . . . . . . 7 (𝜑 → {𝐵, 𝐶} ⊆ (Vtx‘𝐺))
112elpw 4355 . . . . . . 7 ({𝐵, 𝐶} ∈ 𝒫 (Vtx‘𝐺) ↔ {𝐵, 𝐶} ⊆ (Vtx‘𝐺))
1210, 11sylibr 226 . . . . . 6 (𝜑 → {𝐵, 𝐶} ∈ 𝒫 (Vtx‘𝐺))
1312, 6upgr1elem 26347 . . . . 5 (𝜑 → {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
14 f1ss 6321 . . . . 5 (({⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{{𝐵, 𝐶}} ∧ {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) → {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
155, 13, 14syl2anc 580 . . . 4 (𝜑 → {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
162a1i 11 . . . . . . 7 (𝜑 → {𝐵, 𝐶} ∈ V)
1716, 6upgr1elem 26347 . . . . . 6 (𝜑 → {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (V ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
18 f1ss 6321 . . . . . 6 (({⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{{𝐵, 𝐶}} ∧ {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (V ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) → {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{𝑥 ∈ (V ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
195, 17, 18syl2anc 580 . . . . 5 (𝜑 → {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{𝑥 ∈ (V ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
20 f1dm 6320 . . . . 5 ({⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{𝑥 ∈ (V ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → dom {⟨𝐴, {𝐵, 𝐶}⟩} = {𝐴})
21 f1eq2 6312 . . . . 5 (dom {⟨𝐴, {𝐵, 𝐶}⟩} = {𝐴} → ({⟨𝐴, {𝐵, 𝐶}⟩}:dom {⟨𝐴, {𝐵, 𝐶}⟩}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
2219, 20, 213syl 18 . . . 4 (𝜑 → ({⟨𝐴, {𝐵, 𝐶}⟩}:dom {⟨𝐴, {𝐵, 𝐶}⟩}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
2315, 22mpbird 249 . . 3 (𝜑 → {⟨𝐴, {𝐵, 𝐶}⟩}:dom {⟨𝐴, {𝐵, 𝐶}⟩}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
24 uspgr1e.e . . . 4 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})
2524dmeqd 5529 . . . 4 (𝜑 → dom (iEdg‘𝐺) = dom {⟨𝐴, {𝐵, 𝐶}⟩})
26 eqidd 2800 . . . 4 (𝜑 → {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} = {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
2724, 25, 26f1eq123d 6349 . . 3 (𝜑 → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ {⟨𝐴, {𝐵, 𝐶}⟩}:dom {⟨𝐴, {𝐵, 𝐶}⟩}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
2823, 27mpbird 249 . 2 (𝜑 → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
2991vgrex 26237 . . 3 (𝐵𝑉𝐺 ∈ V)
30 eqid 2799 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
31 eqid 2799 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
3230, 31isuspgr 26388 . . 3 (𝐺 ∈ V → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
336, 29, 323syl 18 . 2 (𝜑 → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
3428, 33mpbird 249 1 (𝜑𝐺 ∈ USPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1653  wcel 2157  {crab 3093  Vcvv 3385  cdif 3766  wss 3769  c0 4115  𝒫 cpw 4349  {csn 4368  {cpr 4370  cop 4374   class class class wbr 4843  dom cdm 5312  1-1wf1 6098  cfv 6101  cle 10364  2c2 11368  chash 13370  Vtxcvtx 26231  iEdgciedg 26232  USPGraphcuspgr 26384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-card 9051  df-cda 9278  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-n0 11581  df-xnn0 11653  df-z 11667  df-uz 11931  df-fz 12581  df-hash 13371  df-uspgr 26386
This theorem is referenced by:  usgr1e  26479  uspgr1eop  26481  1loopgruspgr  26750
  Copyright terms: Public domain W3C validator