![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uspgr1e | Structured version Visualization version GIF version |
Description: A simple pseudograph with one edge. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.) (Revised by AV, 21-Mar-2021.) (Proof shortened by AV, 17-Apr-2021.) |
Ref | Expression |
---|---|
uspgr1e.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uspgr1e.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
uspgr1e.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
uspgr1e.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
uspgr1e.e | ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝐵, 𝐶}〉}) |
Ref | Expression |
---|---|
uspgr1e | ⊢ (𝜑 → 𝐺 ∈ USPGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgr1e.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
2 | prex 5425 | . . . . . . 7 ⊢ {𝐵, 𝐶} ∈ V | |
3 | 2 | snid 4658 | . . . . . 6 ⊢ {𝐵, 𝐶} ∈ {{𝐵, 𝐶}} |
4 | f1sng 6862 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑋 ∧ {𝐵, 𝐶} ∈ {{𝐵, 𝐶}}) → {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{{𝐵, 𝐶}}) | |
5 | 1, 3, 4 | sylancl 586 | . . . . 5 ⊢ (𝜑 → {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{{𝐵, 𝐶}}) |
6 | uspgr1e.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
7 | uspgr1e.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
8 | 6, 7 | prssd 4818 | . . . . . . . 8 ⊢ (𝜑 → {𝐵, 𝐶} ⊆ 𝑉) |
9 | uspgr1e.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
10 | 8, 9 | sseqtrdi 4028 | . . . . . . 7 ⊢ (𝜑 → {𝐵, 𝐶} ⊆ (Vtx‘𝐺)) |
11 | 2 | elpw 4600 | . . . . . . 7 ⊢ ({𝐵, 𝐶} ∈ 𝒫 (Vtx‘𝐺) ↔ {𝐵, 𝐶} ⊆ (Vtx‘𝐺)) |
12 | 10, 11 | sylibr 233 | . . . . . 6 ⊢ (𝜑 → {𝐵, 𝐶} ∈ 𝒫 (Vtx‘𝐺)) |
13 | 12, 6 | upgr1elem 28237 | . . . . 5 ⊢ (𝜑 → {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
14 | f1ss 6780 | . . . . 5 ⊢ (({〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{{𝐵, 𝐶}} ∧ {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) → {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
15 | 5, 13, 14 | syl2anc 584 | . . . 4 ⊢ (𝜑 → {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
16 | 2 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → {𝐵, 𝐶} ∈ V) |
17 | 16, 6 | upgr1elem 28237 | . . . . . 6 ⊢ (𝜑 → {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (V ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
18 | f1ss 6780 | . . . . . 6 ⊢ (({〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{{𝐵, 𝐶}} ∧ {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (V ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) → {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{𝑥 ∈ (V ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
19 | 5, 17, 18 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{𝑥 ∈ (V ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
20 | f1dm 6778 | . . . . 5 ⊢ ({〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{𝑥 ∈ (V ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → dom {〈𝐴, {𝐵, 𝐶}〉} = {𝐴}) | |
21 | f1eq2 6770 | . . . . 5 ⊢ (dom {〈𝐴, {𝐵, 𝐶}〉} = {𝐴} → ({〈𝐴, {𝐵, 𝐶}〉}:dom {〈𝐴, {𝐵, 𝐶}〉}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) | |
22 | 19, 20, 21 | 3syl 18 | . . . 4 ⊢ (𝜑 → ({〈𝐴, {𝐵, 𝐶}〉}:dom {〈𝐴, {𝐵, 𝐶}〉}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
23 | 15, 22 | mpbird 256 | . . 3 ⊢ (𝜑 → {〈𝐴, {𝐵, 𝐶}〉}:dom {〈𝐴, {𝐵, 𝐶}〉}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
24 | uspgr1e.e | . . . 4 ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝐵, 𝐶}〉}) | |
25 | 24 | dmeqd 5897 | . . . 4 ⊢ (𝜑 → dom (iEdg‘𝐺) = dom {〈𝐴, {𝐵, 𝐶}〉}) |
26 | eqidd 2732 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} = {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
27 | 24, 25, 26 | f1eq123d 6812 | . . 3 ⊢ (𝜑 → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ {〈𝐴, {𝐵, 𝐶}〉}:dom {〈𝐴, {𝐵, 𝐶}〉}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
28 | 23, 27 | mpbird 256 | . 2 ⊢ (𝜑 → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
29 | 9 | 1vgrex 28127 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐺 ∈ V) |
30 | eqid 2731 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
31 | eqid 2731 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
32 | 30, 31 | isuspgr 28277 | . . 3 ⊢ (𝐺 ∈ V → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
33 | 6, 29, 32 | 3syl 18 | . 2 ⊢ (𝜑 → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
34 | 28, 33 | mpbird 256 | 1 ⊢ (𝜑 → 𝐺 ∈ USPGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 {crab 3431 Vcvv 3473 ∖ cdif 3941 ⊆ wss 3944 ∅c0 4318 𝒫 cpw 4596 {csn 4622 {cpr 4624 〈cop 4628 class class class wbr 5141 dom cdm 5669 –1-1→wf1 6529 ‘cfv 6532 ≤ cle 11231 2c2 12249 ♯chash 14272 Vtxcvtx 28121 iEdgciedg 28122 USPGraphcuspgr 28273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-1st 7957 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-oadd 8452 df-er 8686 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-dju 9878 df-card 9916 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-2 12257 df-n0 12455 df-xnn0 12527 df-z 12541 df-uz 12805 df-fz 13467 df-hash 14273 df-uspgr 28275 |
This theorem is referenced by: usgr1e 28367 uspgr1eop 28369 1loopgruspgr 28622 |
Copyright terms: Public domain | W3C validator |