MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgr1e Structured version   Visualization version   GIF version

Theorem uspgr1e 27028
Description: A simple pseudograph with one edge. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.) (Revised by AV, 21-Mar-2021.) (Proof shortened by AV, 17-Apr-2021.)
Hypotheses
Ref Expression
uspgr1e.v 𝑉 = (Vtx‘𝐺)
uspgr1e.a (𝜑𝐴𝑋)
uspgr1e.b (𝜑𝐵𝑉)
uspgr1e.c (𝜑𝐶𝑉)
uspgr1e.e (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})
Assertion
Ref Expression
uspgr1e (𝜑𝐺 ∈ USPGraph)

Proof of Theorem uspgr1e
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uspgr1e.a . . . . . 6 (𝜑𝐴𝑋)
2 prex 5335 . . . . . . 7 {𝐵, 𝐶} ∈ V
32snid 4603 . . . . . 6 {𝐵, 𝐶} ∈ {{𝐵, 𝐶}}
4 f1sng 6658 . . . . . 6 ((𝐴𝑋 ∧ {𝐵, 𝐶} ∈ {{𝐵, 𝐶}}) → {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{{𝐵, 𝐶}})
51, 3, 4sylancl 588 . . . . 5 (𝜑 → {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{{𝐵, 𝐶}})
6 uspgr1e.b . . . . . . . . 9 (𝜑𝐵𝑉)
7 uspgr1e.c . . . . . . . . 9 (𝜑𝐶𝑉)
86, 7prssd 4757 . . . . . . . 8 (𝜑 → {𝐵, 𝐶} ⊆ 𝑉)
9 uspgr1e.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
108, 9sseqtrdi 4019 . . . . . . 7 (𝜑 → {𝐵, 𝐶} ⊆ (Vtx‘𝐺))
112elpw 4545 . . . . . . 7 ({𝐵, 𝐶} ∈ 𝒫 (Vtx‘𝐺) ↔ {𝐵, 𝐶} ⊆ (Vtx‘𝐺))
1210, 11sylibr 236 . . . . . 6 (𝜑 → {𝐵, 𝐶} ∈ 𝒫 (Vtx‘𝐺))
1312, 6upgr1elem 26899 . . . . 5 (𝜑 → {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
14 f1ss 6582 . . . . 5 (({⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{{𝐵, 𝐶}} ∧ {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) → {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
155, 13, 14syl2anc 586 . . . 4 (𝜑 → {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
162a1i 11 . . . . . . 7 (𝜑 → {𝐵, 𝐶} ∈ V)
1716, 6upgr1elem 26899 . . . . . 6 (𝜑 → {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (V ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
18 f1ss 6582 . . . . . 6 (({⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{{𝐵, 𝐶}} ∧ {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (V ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) → {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{𝑥 ∈ (V ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
195, 17, 18syl2anc 586 . . . . 5 (𝜑 → {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{𝑥 ∈ (V ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
20 f1dm 6581 . . . . 5 ({⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{𝑥 ∈ (V ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → dom {⟨𝐴, {𝐵, 𝐶}⟩} = {𝐴})
21 f1eq2 6573 . . . . 5 (dom {⟨𝐴, {𝐵, 𝐶}⟩} = {𝐴} → ({⟨𝐴, {𝐵, 𝐶}⟩}:dom {⟨𝐴, {𝐵, 𝐶}⟩}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
2219, 20, 213syl 18 . . . 4 (𝜑 → ({⟨𝐴, {𝐵, 𝐶}⟩}:dom {⟨𝐴, {𝐵, 𝐶}⟩}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
2315, 22mpbird 259 . . 3 (𝜑 → {⟨𝐴, {𝐵, 𝐶}⟩}:dom {⟨𝐴, {𝐵, 𝐶}⟩}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
24 uspgr1e.e . . . 4 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})
2524dmeqd 5776 . . . 4 (𝜑 → dom (iEdg‘𝐺) = dom {⟨𝐴, {𝐵, 𝐶}⟩})
26 eqidd 2824 . . . 4 (𝜑 → {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} = {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
2724, 25, 26f1eq123d 6610 . . 3 (𝜑 → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ {⟨𝐴, {𝐵, 𝐶}⟩}:dom {⟨𝐴, {𝐵, 𝐶}⟩}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
2823, 27mpbird 259 . 2 (𝜑 → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
2991vgrex 26789 . . 3 (𝐵𝑉𝐺 ∈ V)
30 eqid 2823 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
31 eqid 2823 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
3230, 31isuspgr 26939 . . 3 (𝐺 ∈ V → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
336, 29, 323syl 18 . 2 (𝜑 → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
3428, 33mpbird 259 1 (𝜑𝐺 ∈ USPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wcel 2114  {crab 3144  Vcvv 3496  cdif 3935  wss 3938  c0 4293  𝒫 cpw 4541  {csn 4569  {cpr 4571  cop 4575   class class class wbr 5068  dom cdm 5557  1-1wf1 6354  cfv 6357  cle 10678  2c2 11695  chash 13693  Vtxcvtx 26783  iEdgciedg 26784  USPGraphcuspgr 26935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-hash 13694  df-uspgr 26937
This theorem is referenced by:  usgr1e  27029  uspgr1eop  27031  1loopgruspgr  27284
  Copyright terms: Public domain W3C validator