![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1vrnfibi | Structured version Visualization version GIF version |
Description: A one-to-one function which is a set is finite if and only if its range is finite. See also f1dmvrnfibi 9335. (Contributed by AV, 10-Jan-2020.) |
Ref | Expression |
---|---|
f1vrnfibi | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1dm 6791 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) | |
2 | dmexg 7893 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
3 | eleq1 2821 | . . . . . 6 ⊢ (𝐴 = dom 𝐹 → (𝐴 ∈ V ↔ dom 𝐹 ∈ V)) | |
4 | 3 | eqcoms 2740 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → (𝐴 ∈ V ↔ dom 𝐹 ∈ V)) |
5 | 2, 4 | imbitrrid 245 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (𝐹 ∈ 𝑉 → 𝐴 ∈ V)) |
6 | 1, 5 | syl 17 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝐹 ∈ 𝑉 → 𝐴 ∈ V)) |
7 | 6 | impcom 408 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ∈ V) |
8 | f1dmvrnfibi 9335 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin)) | |
9 | 7, 8 | sylancom 588 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 dom cdm 5676 ran crn 5677 –1-1→wf1 6540 Fincfn 8938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-om 7855 df-1st 7974 df-2nd 7975 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-fin 8942 |
This theorem is referenced by: negfi 12162 usgredgffibi 28578 |
Copyright terms: Public domain | W3C validator |