| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1vrnfibi | Structured version Visualization version GIF version | ||
| Description: A one-to-one function which is a set is finite if and only if its range is finite. See also f1dmvrnfibi 9250. (Contributed by AV, 10-Jan-2020.) |
| Ref | Expression |
|---|---|
| f1vrnfibi | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1dm 6728 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) | |
| 2 | dmexg 7841 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
| 3 | eleq1 2816 | . . . . . 6 ⊢ (𝐴 = dom 𝐹 → (𝐴 ∈ V ↔ dom 𝐹 ∈ V)) | |
| 4 | 3 | eqcoms 2737 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → (𝐴 ∈ V ↔ dom 𝐹 ∈ V)) |
| 5 | 2, 4 | imbitrrid 246 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (𝐹 ∈ 𝑉 → 𝐴 ∈ V)) |
| 6 | 1, 5 | syl 17 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝐹 ∈ 𝑉 → 𝐴 ∈ V)) |
| 7 | 6 | impcom 407 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ∈ V) |
| 8 | f1dmvrnfibi 9250 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin)) | |
| 9 | 7, 8 | sylancom 588 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 dom cdm 5623 ran crn 5624 –1-1→wf1 6483 Fincfn 8879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7807 df-1st 7931 df-2nd 7932 df-1o 8395 df-en 8880 df-dom 8881 df-fin 8883 |
| This theorem is referenced by: negfi 12092 usgredgffibi 29287 |
| Copyright terms: Public domain | W3C validator |