MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1vrnfibi Structured version   Visualization version   GIF version

Theorem f1vrnfibi 9336
Description: A one-to-one function which is a set is finite if and only if its range is finite. See also f1dmvrnfibi 9335. (Contributed by AV, 10-Jan-2020.)
Assertion
Ref Expression
f1vrnfibi ((𝐹𝑉𝐹:𝐴1-1𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin))

Proof of Theorem f1vrnfibi
StepHypRef Expression
1 f1dm 6791 . . . 4 (𝐹:𝐴1-1𝐵 → dom 𝐹 = 𝐴)
2 dmexg 7893 . . . . 5 (𝐹𝑉 → dom 𝐹 ∈ V)
3 eleq1 2821 . . . . . 6 (𝐴 = dom 𝐹 → (𝐴 ∈ V ↔ dom 𝐹 ∈ V))
43eqcoms 2740 . . . . 5 (dom 𝐹 = 𝐴 → (𝐴 ∈ V ↔ dom 𝐹 ∈ V))
52, 4imbitrrid 245 . . . 4 (dom 𝐹 = 𝐴 → (𝐹𝑉𝐴 ∈ V))
61, 5syl 17 . . 3 (𝐹:𝐴1-1𝐵 → (𝐹𝑉𝐴 ∈ V))
76impcom 408 . 2 ((𝐹𝑉𝐹:𝐴1-1𝐵) → 𝐴 ∈ V)
8 f1dmvrnfibi 9335 . 2 ((𝐴 ∈ V ∧ 𝐹:𝐴1-1𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin))
97, 8sylancom 588 1 ((𝐹𝑉𝐹:𝐴1-1𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  dom cdm 5676  ran crn 5677  1-1wf1 6540  Fincfn 8938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-om 7855  df-1st 7974  df-2nd 7975  df-1o 8465  df-er 8702  df-en 8939  df-dom 8940  df-fin 8942
This theorem is referenced by:  negfi  12162  usgredgffibi  28578
  Copyright terms: Public domain W3C validator