![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1vrnfibi | Structured version Visualization version GIF version |
Description: A one-to-one function which is a set is finite if and only if its range is finite. See also f1dmvrnfibi 9360. (Contributed by AV, 10-Jan-2020.) |
Ref | Expression |
---|---|
f1vrnfibi | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1dm 6792 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) | |
2 | dmexg 7907 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
3 | eleq1 2813 | . . . . . 6 ⊢ (𝐴 = dom 𝐹 → (𝐴 ∈ V ↔ dom 𝐹 ∈ V)) | |
4 | 3 | eqcoms 2733 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → (𝐴 ∈ V ↔ dom 𝐹 ∈ V)) |
5 | 2, 4 | imbitrrid 245 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (𝐹 ∈ 𝑉 → 𝐴 ∈ V)) |
6 | 1, 5 | syl 17 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝐹 ∈ 𝑉 → 𝐴 ∈ V)) |
7 | 6 | impcom 406 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ∈ V) |
8 | f1dmvrnfibi 9360 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin)) | |
9 | 7, 8 | sylancom 586 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3463 dom cdm 5672 ran crn 5673 –1-1→wf1 6540 Fincfn 8962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-om 7869 df-1st 7991 df-2nd 7992 df-1o 8485 df-er 8723 df-en 8963 df-dom 8964 df-fin 8966 |
This theorem is referenced by: negfi 12193 usgredgffibi 29181 |
Copyright terms: Public domain | W3C validator |