![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1orel | Structured version Visualization version GIF version |
Description: A one-to-one onto mapping is a relation. (Contributed by NM, 13-Dec-2003.) |
Ref | Expression |
---|---|
f1orel | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofun 6864 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) | |
2 | funrel 6595 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Rel wrel 5705 Fun wfun 6567 –1-1-onto→wf1o 6572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-f1o 6580 |
This theorem is referenced by: f1ococnv1 6891 isores1 7370 weisoeq2 7392 f1oexrnex 7967 ssenen 9217 f1oenfirn 9246 cantnffval2 9764 hasheqf1oi 14400 cmphaushmeo 23829 cycpmconjs 33149 poimirlem3 37583 f1ocan2fv 37687 ltrncnvnid 40084 brco2f1o 43994 brco3f1o 43995 ntrclsnvobr 44014 ntrclsiex 44015 ntrneiiex 44038 ntrneinex 44039 neicvgel1 44081 3f1oss1 46990 3f1oss2 46991 |
Copyright terms: Public domain | W3C validator |