MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1orel Structured version   Visualization version   GIF version

Theorem f1orel 6806
Description: A one-to-one onto mapping is a relation. (Contributed by NM, 13-Dec-2003.)
Assertion
Ref Expression
f1orel (𝐹:𝐴1-1-onto𝐵 → Rel 𝐹)

Proof of Theorem f1orel
StepHypRef Expression
1 f1ofun 6805 . 2 (𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)
2 funrel 6536 . 2 (Fun 𝐹 → Rel 𝐹)
31, 2syl 17 1 (𝐹:𝐴1-1-onto𝐵 → Rel 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Rel wrel 5646  Fun wfun 6508  1-1-ontowf1o 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-f1o 6521
This theorem is referenced by:  f1ococnv1  6832  isores1  7312  weisoeq2  7334  f1oexrnex  7906  ssenen  9121  f1oenfirn  9150  cantnffval2  9655  hasheqf1oi  14323  cmphaushmeo  23694  cycpmconjs  33120  poimirlem3  37624  f1ocan2fv  37728  ltrncnvnid  40128  brco2f1o  44028  brco3f1o  44029  ntrclsnvobr  44048  ntrclsiex  44049  ntrneiiex  44072  ntrneinex  44073  neicvgel1  44115  3f1oss1  47080  3f1oss2  47081
  Copyright terms: Public domain W3C validator