MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1orel Structured version   Visualization version   GIF version

Theorem f1orel 6766
Description: A one-to-one onto mapping is a relation. (Contributed by NM, 13-Dec-2003.)
Assertion
Ref Expression
f1orel (𝐹:𝐴1-1-onto𝐵 → Rel 𝐹)

Proof of Theorem f1orel
StepHypRef Expression
1 f1ofun 6765 . 2 (𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)
2 funrel 6498 . 2 (Fun 𝐹 → Rel 𝐹)
31, 2syl 17 1 (𝐹:𝐴1-1-onto𝐵 → Rel 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Rel wrel 5621  Fun wfun 6475  1-1-ontowf1o 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-f1o 6488
This theorem is referenced by:  f1ococnv1  6792  isores1  7268  weisoeq2  7290  f1oexrnex  7857  ssenen  9064  f1oenfirn  9089  cantnffval2  9585  hasheqf1oi  14258  cmphaushmeo  23716  cycpmconjs  33123  poimirlem3  37669  f1ocan2fv  37773  ltrncnvnid  40172  brco2f1o  44071  brco3f1o  44072  ntrclsnvobr  44091  ntrclsiex  44092  ntrneiiex  44115  ntrneinex  44116  neicvgel1  44158  3f1oss1  47112  3f1oss2  47113
  Copyright terms: Public domain W3C validator