MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1orel Structured version   Visualization version   GIF version

Theorem f1orel 6865
Description: A one-to-one onto mapping is a relation. (Contributed by NM, 13-Dec-2003.)
Assertion
Ref Expression
f1orel (𝐹:𝐴1-1-onto𝐵 → Rel 𝐹)

Proof of Theorem f1orel
StepHypRef Expression
1 f1ofun 6864 . 2 (𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)
2 funrel 6595 . 2 (Fun 𝐹 → Rel 𝐹)
31, 2syl 17 1 (𝐹:𝐴1-1-onto𝐵 → Rel 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Rel wrel 5705  Fun wfun 6567  1-1-ontowf1o 6572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-f1o 6580
This theorem is referenced by:  f1ococnv1  6891  isores1  7370  weisoeq2  7392  f1oexrnex  7967  ssenen  9217  f1oenfirn  9246  cantnffval2  9764  hasheqf1oi  14400  cmphaushmeo  23829  cycpmconjs  33149  poimirlem3  37583  f1ocan2fv  37687  ltrncnvnid  40084  brco2f1o  43994  brco3f1o  43995  ntrclsnvobr  44014  ntrclsiex  44015  ntrneiiex  44038  ntrneinex  44039  neicvgel1  44081  3f1oss1  46990  3f1oss2  46991
  Copyright terms: Public domain W3C validator