| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1orel | Structured version Visualization version GIF version | ||
| Description: A one-to-one onto mapping is a relation. (Contributed by NM, 13-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1orel | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofun 6770 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) | |
| 2 | funrel 6503 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Rel wrel 5624 Fun wfun 6480 –1-1-onto→wf1o 6485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-f1o 6493 |
| This theorem is referenced by: f1ococnv1 6797 isores1 7274 weisoeq2 7296 f1oexrnex 7863 ssenen 9071 f1oenfirn 9096 cantnffval2 9592 hasheqf1oi 14260 cmphaushmeo 23716 cycpmconjs 33132 poimirlem3 37684 f1ocan2fv 37788 ltrncnvnid 40247 brco2f1o 44150 brco3f1o 44151 ntrclsnvobr 44170 ntrclsiex 44171 ntrneiiex 44194 ntrneinex 44195 neicvgel1 44237 3f1oss1 47200 3f1oss2 47201 |
| Copyright terms: Public domain | W3C validator |