MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1orel Structured version   Visualization version   GIF version

Theorem f1orel 6719
Description: A one-to-one onto mapping is a relation. (Contributed by NM, 13-Dec-2003.)
Assertion
Ref Expression
f1orel (𝐹:𝐴1-1-onto𝐵 → Rel 𝐹)

Proof of Theorem f1orel
StepHypRef Expression
1 f1ofun 6718 . 2 (𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)
2 funrel 6451 . 2 (Fun 𝐹 → Rel 𝐹)
31, 2syl 17 1 (𝐹:𝐴1-1-onto𝐵 → Rel 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Rel wrel 5594  Fun wfun 6427  1-1-ontowf1o 6432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-f1o 6440
This theorem is referenced by:  f1ococnv1  6745  isores1  7205  weisoeq2  7227  f1oexrnex  7774  ssenen  8938  f1oenfirn  8966  cantnffval2  9453  hasheqf1oi  14066  cmphaushmeo  22951  cycpmconjs  31423  poimirlem3  35780  f1ocan2fv  35885  ltrncnvnid  38141  brco2f1o  41642  brco3f1o  41643  ntrclsnvobr  41662  ntrclsiex  41663  ntrneiiex  41686  ntrneinex  41687  neicvgel1  41729
  Copyright terms: Public domain W3C validator