|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > f1orel | Structured version Visualization version GIF version | ||
| Description: A one-to-one onto mapping is a relation. (Contributed by NM, 13-Dec-2003.) | 
| Ref | Expression | 
|---|---|
| f1orel | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | f1ofun 6850 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) | |
| 2 | funrel 6583 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 Rel wrel 5690 Fun wfun 6555 –1-1-onto→wf1o 6560 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-f1o 6568 | 
| This theorem is referenced by: f1ococnv1 6877 isores1 7354 weisoeq2 7376 f1oexrnex 7949 ssenen 9191 f1oenfirn 9220 cantnffval2 9735 hasheqf1oi 14390 cmphaushmeo 23808 cycpmconjs 33176 poimirlem3 37630 f1ocan2fv 37734 ltrncnvnid 40129 brco2f1o 44045 brco3f1o 44046 ntrclsnvobr 44065 ntrclsiex 44066 ntrneiiex 44089 ntrneinex 44090 neicvgel1 44132 3f1oss1 47087 3f1oss2 47088 | 
| Copyright terms: Public domain | W3C validator |