Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1orel | Structured version Visualization version GIF version |
Description: A one-to-one onto mapping is a relation. (Contributed by NM, 13-Dec-2003.) |
Ref | Expression |
---|---|
f1orel | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofun 6718 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) | |
2 | funrel 6451 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Rel wrel 5594 Fun wfun 6427 –1-1-onto→wf1o 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-f1o 6440 |
This theorem is referenced by: f1ococnv1 6745 isores1 7205 weisoeq2 7227 f1oexrnex 7774 ssenen 8938 f1oenfirn 8966 cantnffval2 9453 hasheqf1oi 14066 cmphaushmeo 22951 cycpmconjs 31423 poimirlem3 35780 f1ocan2fv 35885 ltrncnvnid 38141 brco2f1o 41642 brco3f1o 41643 ntrclsnvobr 41662 ntrclsiex 41663 ntrneiiex 41686 ntrneinex 41687 neicvgel1 41729 |
Copyright terms: Public domain | W3C validator |