MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1orel Structured version   Visualization version   GIF version

Theorem f1orel 6803
Description: A one-to-one onto mapping is a relation. (Contributed by NM, 13-Dec-2003.)
Assertion
Ref Expression
f1orel (𝐹:𝐴1-1-onto𝐵 → Rel 𝐹)

Proof of Theorem f1orel
StepHypRef Expression
1 f1ofun 6802 . 2 (𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)
2 funrel 6533 . 2 (Fun 𝐹 → Rel 𝐹)
31, 2syl 17 1 (𝐹:𝐴1-1-onto𝐵 → Rel 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Rel wrel 5643  Fun wfun 6505  1-1-ontowf1o 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-f1o 6518
This theorem is referenced by:  f1ococnv1  6829  isores1  7309  weisoeq2  7331  f1oexrnex  7903  ssenen  9115  f1oenfirn  9144  cantnffval2  9648  hasheqf1oi  14316  cmphaushmeo  23687  cycpmconjs  33113  poimirlem3  37617  f1ocan2fv  37721  ltrncnvnid  40121  brco2f1o  44021  brco3f1o  44022  ntrclsnvobr  44041  ntrclsiex  44042  ntrneiiex  44065  ntrneinex  44066  neicvgel1  44108  3f1oss1  47076  3f1oss2  47077
  Copyright terms: Public domain W3C validator