| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1orel | Structured version Visualization version GIF version | ||
| Description: A one-to-one onto mapping is a relation. (Contributed by NM, 13-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1orel | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofun 6802 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) | |
| 2 | funrel 6533 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Rel wrel 5643 Fun wfun 6505 –1-1-onto→wf1o 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-f1o 6518 |
| This theorem is referenced by: f1ococnv1 6829 isores1 7309 weisoeq2 7331 f1oexrnex 7903 ssenen 9115 f1oenfirn 9144 cantnffval2 9648 hasheqf1oi 14316 cmphaushmeo 23687 cycpmconjs 33113 poimirlem3 37617 f1ocan2fv 37721 ltrncnvnid 40121 brco2f1o 44021 brco3f1o 44022 ntrclsnvobr 44041 ntrclsiex 44042 ntrneiiex 44065 ntrneinex 44066 neicvgel1 44108 3f1oss1 47076 3f1oss2 47077 |
| Copyright terms: Public domain | W3C validator |