MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1orel Structured version   Visualization version   GIF version

Theorem f1orel 6851
Description: A one-to-one onto mapping is a relation. (Contributed by NM, 13-Dec-2003.)
Assertion
Ref Expression
f1orel (𝐹:𝐴1-1-onto𝐵 → Rel 𝐹)

Proof of Theorem f1orel
StepHypRef Expression
1 f1ofun 6850 . 2 (𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)
2 funrel 6583 . 2 (Fun 𝐹 → Rel 𝐹)
31, 2syl 17 1 (𝐹:𝐴1-1-onto𝐵 → Rel 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Rel wrel 5690  Fun wfun 6555  1-1-ontowf1o 6560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-f1o 6568
This theorem is referenced by:  f1ococnv1  6877  isores1  7354  weisoeq2  7376  f1oexrnex  7949  ssenen  9191  f1oenfirn  9220  cantnffval2  9735  hasheqf1oi  14390  cmphaushmeo  23808  cycpmconjs  33176  poimirlem3  37630  f1ocan2fv  37734  ltrncnvnid  40129  brco2f1o  44045  brco3f1o  44046  ntrclsnvobr  44065  ntrclsiex  44066  ntrneiiex  44089  ntrneinex  44090  neicvgel1  44132  3f1oss1  47087  3f1oss2  47088
  Copyright terms: Public domain W3C validator