Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1orel | Structured version Visualization version GIF version |
Description: A one-to-one onto mapping is a relation. (Contributed by NM, 13-Dec-2003.) |
Ref | Expression |
---|---|
f1orel | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofun 6702 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) | |
2 | funrel 6435 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Rel wrel 5585 Fun wfun 6412 –1-1-onto→wf1o 6417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-f1o 6425 |
This theorem is referenced by: f1ococnv1 6728 isores1 7185 weisoeq2 7207 f1oexrnex 7748 ssenen 8887 f1oenfirn 8927 cantnffval2 9383 hasheqf1oi 13994 cmphaushmeo 22859 cycpmconjs 31325 poimirlem3 35707 f1ocan2fv 35812 ltrncnvnid 38068 brco2f1o 41531 brco3f1o 41532 ntrclsnvobr 41551 ntrclsiex 41552 ntrneiiex 41575 ntrneinex 41576 neicvgel1 41618 |
Copyright terms: Public domain | W3C validator |