| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1orel | Structured version Visualization version GIF version | ||
| Description: A one-to-one onto mapping is a relation. (Contributed by NM, 13-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1orel | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofun 6765 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) | |
| 2 | funrel 6498 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Rel wrel 5621 Fun wfun 6475 –1-1-onto→wf1o 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-f1o 6488 |
| This theorem is referenced by: f1ococnv1 6792 isores1 7268 weisoeq2 7290 f1oexrnex 7857 ssenen 9064 f1oenfirn 9089 cantnffval2 9585 hasheqf1oi 14258 cmphaushmeo 23716 cycpmconjs 33123 poimirlem3 37669 f1ocan2fv 37773 ltrncnvnid 40172 brco2f1o 44071 brco3f1o 44072 ntrclsnvobr 44091 ntrclsiex 44092 ntrneiiex 44115 ntrneinex 44116 neicvgel1 44158 3f1oss1 47112 3f1oss2 47113 |
| Copyright terms: Public domain | W3C validator |