| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1orel | Structured version Visualization version GIF version | ||
| Description: A one-to-one onto mapping is a relation. (Contributed by NM, 13-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1orel | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofun 6770 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) | |
| 2 | funrel 6503 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Rel wrel 5628 Fun wfun 6480 –1-1-onto→wf1o 6485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-f1o 6493 |
| This theorem is referenced by: f1ococnv1 6797 isores1 7275 weisoeq2 7297 f1oexrnex 7867 ssenen 9075 f1oenfirn 9104 cantnffval2 9610 hasheqf1oi 14276 cmphaushmeo 23703 cycpmconjs 33111 poimirlem3 37602 f1ocan2fv 37706 ltrncnvnid 40106 brco2f1o 44005 brco3f1o 44006 ntrclsnvobr 44025 ntrclsiex 44026 ntrneiiex 44049 ntrneinex 44050 neicvgel1 44092 3f1oss1 47060 3f1oss2 47061 |
| Copyright terms: Public domain | W3C validator |