| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1orel | Structured version Visualization version GIF version | ||
| Description: A one-to-one onto mapping is a relation. (Contributed by NM, 13-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1orel | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofun 6825 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) | |
| 2 | funrel 6558 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Rel wrel 5664 Fun wfun 6530 –1-1-onto→wf1o 6535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-f1o 6543 |
| This theorem is referenced by: f1ococnv1 6852 isores1 7332 weisoeq2 7354 f1oexrnex 7928 ssenen 9170 f1oenfirn 9199 cantnffval2 9714 hasheqf1oi 14374 cmphaushmeo 23743 cycpmconjs 33172 poimirlem3 37652 f1ocan2fv 37756 ltrncnvnid 40151 brco2f1o 44023 brco3f1o 44024 ntrclsnvobr 44043 ntrclsiex 44044 ntrneiiex 44067 ntrneinex 44068 neicvgel1 44110 3f1oss1 47071 3f1oss2 47072 |
| Copyright terms: Public domain | W3C validator |