| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1orel | Structured version Visualization version GIF version | ||
| Description: A one-to-one onto mapping is a relation. (Contributed by NM, 13-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1orel | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofun 6805 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) | |
| 2 | funrel 6536 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Rel wrel 5646 Fun wfun 6508 –1-1-onto→wf1o 6513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-f1o 6521 |
| This theorem is referenced by: f1ococnv1 6832 isores1 7312 weisoeq2 7334 f1oexrnex 7906 ssenen 9121 f1oenfirn 9150 cantnffval2 9655 hasheqf1oi 14323 cmphaushmeo 23694 cycpmconjs 33120 poimirlem3 37624 f1ocan2fv 37728 ltrncnvnid 40128 brco2f1o 44028 brco3f1o 44029 ntrclsnvobr 44048 ntrclsiex 44049 ntrneiiex 44072 ntrneinex 44073 neicvgel1 44115 3f1oss1 47080 3f1oss2 47081 |
| Copyright terms: Public domain | W3C validator |