![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneiiex | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the interior function exists. (Contributed by RP, 29-May-2021.) |
Ref | Expression |
---|---|
ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
Ref | Expression |
---|---|
ntrneiiex | ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.o | . . . . 5 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
2 | ntrnei.f | . . . . 5 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
3 | ntrnei.r | . . . . 5 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
4 | 1, 2, 3 | ntrneif1o 39159 | . . . 4 ⊢ (𝜑 → 𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵)) |
5 | f1orel 6363 | . . . 4 ⊢ (𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵) → Rel 𝐹) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → Rel 𝐹) |
7 | releldm 5566 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐼𝐹𝑁) → 𝐼 ∈ dom 𝐹) | |
8 | 6, 3, 7 | syl2anc 580 | . 2 ⊢ (𝜑 → 𝐼 ∈ dom 𝐹) |
9 | f1odm 6364 | . . 3 ⊢ (𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵) → dom 𝐹 = (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) | |
10 | 4, 9 | syl 17 | . 2 ⊢ (𝜑 → dom 𝐹 = (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
11 | 8, 10 | eleqtrd 2884 | 1 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 {crab 3097 Vcvv 3389 𝒫 cpw 4353 class class class wbr 4847 ↦ cmpt 4926 dom cdm 5316 Rel wrel 5321 –1-1-onto→wf1o 6104 ‘cfv 6105 (class class class)co 6882 ↦ cmpt2 6884 ↑𝑚 cmap 8099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2379 ax-ext 2781 ax-rep 4968 ax-sep 4979 ax-nul 4987 ax-pow 5039 ax-pr 5101 ax-un 7187 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2593 df-eu 2611 df-clab 2790 df-cleq 2796 df-clel 2799 df-nfc 2934 df-ne 2976 df-ral 3098 df-rex 3099 df-reu 3100 df-rab 3102 df-v 3391 df-sbc 3638 df-csb 3733 df-dif 3776 df-un 3778 df-in 3780 df-ss 3787 df-nul 4120 df-if 4282 df-pw 4355 df-sn 4373 df-pr 4375 df-op 4379 df-uni 4633 df-iun 4716 df-br 4848 df-opab 4910 df-mpt 4927 df-id 5224 df-xp 5322 df-rel 5323 df-cnv 5324 df-co 5325 df-dm 5326 df-rn 5327 df-res 5328 df-ima 5329 df-iota 6068 df-fun 6107 df-fn 6108 df-f 6109 df-f1 6110 df-fo 6111 df-f1o 6112 df-fv 6113 df-ov 6885 df-oprab 6886 df-mpt2 6887 df-1st 7405 df-2nd 7406 df-map 8101 |
This theorem is referenced by: ntrneifv1 39163 ntrneifv2 39164 ntrneiel 39165 ntrneifv4 39169 ntrneiel2 39170 ntrneicls00 39173 ntrneicls11 39174 ntrneiiso 39175 ntrneik2 39176 ntrneikb 39178 ntrneixb 39179 ntrneik3 39180 ntrneix3 39181 ntrneik13 39182 ntrneix13 39183 ntrneik4w 39184 ntrneik4 39185 |
Copyright terms: Public domain | W3C validator |