MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isores1 Structured version   Visualization version   GIF version

Theorem isores1 7244
Description: An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
isores1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵))

Proof of Theorem isores1
StepHypRef Expression
1 isocnv 7240 . . . . 5 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴))
2 isores2 7243 . . . . 5 (𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) ↔ 𝐻 Isom 𝑆, (𝑅 ∩ (𝐴 × 𝐴))(𝐵, 𝐴))
31, 2sylib 217 . . . 4 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑆, (𝑅 ∩ (𝐴 × 𝐴))(𝐵, 𝐴))
4 isocnv 7240 . . . 4 (𝐻 Isom 𝑆, (𝑅 ∩ (𝐴 × 𝐴))(𝐵, 𝐴) → 𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵))
53, 4syl 17 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵))
6 isof1o 7233 . . . 4 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
7 f1orel 6756 . . . 4 (𝐻:𝐴1-1-onto𝐵 → Rel 𝐻)
8 dfrel2 6114 . . . . 5 (Rel 𝐻𝐻 = 𝐻)
9 isoeq1 7227 . . . . 5 (𝐻 = 𝐻 → (𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵) ↔ 𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵)))
108, 9sylbi 216 . . . 4 (Rel 𝐻 → (𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵) ↔ 𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵)))
116, 7, 103syl 18 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵) ↔ 𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵)))
125, 11mpbid 231 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵))
13 isocnv 7240 . . . . 5 (𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵) → 𝐻 Isom 𝑆, (𝑅 ∩ (𝐴 × 𝐴))(𝐵, 𝐴))
1413, 2sylibr 233 . . . 4 (𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵) → 𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴))
15 isocnv 7240 . . . 4 (𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
1614, 15syl 17 . . 3 (𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
17 isof1o 7233 . . . 4 (𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
18 isoeq1 7227 . . . . 5 (𝐻 = 𝐻 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)))
198, 18sylbi 216 . . . 4 (Rel 𝐻 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)))
2017, 7, 193syl 18 . . 3 (𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵) → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)))
2116, 20mpbid 231 . 2 (𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
2212, 21impbii 208 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1540  cin 3895   × cxp 5605  ccnv 5606  Rel wrel 5612  1-1-ontowf1o 6464   Isom wiso 6466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pr 5366
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3442  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-br 5087  df-opab 5149  df-id 5506  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-isom 6474
This theorem is referenced by:  leiso  14251  icopnfhmeo  24186  iccpnfhmeo  24188  xrhmeo  24189  gtiso  31164  xrge0iifhmeo  32022
  Copyright terms: Public domain W3C validator