MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isores1 Structured version   Visualization version   GIF version

Theorem isores1 7312
Description: An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
isores1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵))

Proof of Theorem isores1
StepHypRef Expression
1 isocnv 7308 . . . . 5 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴))
2 isores2 7311 . . . . 5 (𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) ↔ 𝐻 Isom 𝑆, (𝑅 ∩ (𝐴 × 𝐴))(𝐵, 𝐴))
31, 2sylib 218 . . . 4 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑆, (𝑅 ∩ (𝐴 × 𝐴))(𝐵, 𝐴))
4 isocnv 7308 . . . 4 (𝐻 Isom 𝑆, (𝑅 ∩ (𝐴 × 𝐴))(𝐵, 𝐴) → 𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵))
53, 4syl 17 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵))
6 isof1o 7301 . . . 4 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
7 f1orel 6806 . . . 4 (𝐻:𝐴1-1-onto𝐵 → Rel 𝐻)
8 dfrel2 6165 . . . . 5 (Rel 𝐻𝐻 = 𝐻)
9 isoeq1 7295 . . . . 5 (𝐻 = 𝐻 → (𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵) ↔ 𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵)))
108, 9sylbi 217 . . . 4 (Rel 𝐻 → (𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵) ↔ 𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵)))
116, 7, 103syl 18 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵) ↔ 𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵)))
125, 11mpbid 232 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵))
13 isocnv 7308 . . . . 5 (𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵) → 𝐻 Isom 𝑆, (𝑅 ∩ (𝐴 × 𝐴))(𝐵, 𝐴))
1413, 2sylibr 234 . . . 4 (𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵) → 𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴))
15 isocnv 7308 . . . 4 (𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
1614, 15syl 17 . . 3 (𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
17 isof1o 7301 . . . 4 (𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
18 isoeq1 7295 . . . . 5 (𝐻 = 𝐻 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)))
198, 18sylbi 217 . . . 4 (Rel 𝐻 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)))
2017, 7, 193syl 18 . . 3 (𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵) → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)))
2116, 20mpbid 232 . 2 (𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
2212, 21impbii 209 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  cin 3916   × cxp 5639  ccnv 5640  Rel wrel 5646  1-1-ontowf1o 6513   Isom wiso 6515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523
This theorem is referenced by:  leiso  14431  icopnfhmeo  24848  iccpnfhmeo  24850  xrhmeo  24851  gtiso  32631  xrge0iifhmeo  33933
  Copyright terms: Public domain W3C validator