Step | Hyp | Ref
| Expression |
1 | | cycpmconjs.c |
. . 3
⊢ 𝐶 = (𝑀 “ (◡♯ “ {𝑃})) |
2 | | cycpmconjs.s |
. . 3
⊢ 𝑆 = (SymGrp‘𝐷) |
3 | | cycpmconjs.n |
. . 3
⊢ 𝑁 = (♯‘𝐷) |
4 | | cycpmconjs.m |
. . 3
⊢ 𝑀 = (toCyc‘𝐷) |
5 | | cycpmconjs.b |
. . 3
⊢ 𝐵 = (Base‘𝑆) |
6 | | cycpmconjs.a |
. . 3
⊢ + =
(+g‘𝑆) |
7 | | cycpmconjs.l |
. . 3
⊢ − =
(-g‘𝑆) |
8 | | cycpmconjs.p |
. . 3
⊢ (𝜑 → 𝑃 ∈ (0...𝑁)) |
9 | | cycpmconjs.d |
. . 3
⊢ (𝜑 → 𝐷 ∈ Fin) |
10 | | cycpmconjs.q |
. . 3
⊢ (𝜑 → 𝑄 ∈ 𝐶) |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | cycpmconjslem2 31324 |
. 2
⊢ (𝜑 → ∃𝑞(𝑞:(0..^𝑁)–1-1-onto→𝐷 ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁))))) |
12 | | cycpmconjs.t |
. . . . . 6
⊢ (𝜑 → 𝑇 ∈ 𝐶) |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 12 | cycpmconjslem2 31324 |
. . . . 5
⊢ (𝜑 → ∃𝑡(𝑡:(0..^𝑁)–1-1-onto→𝐷 ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁))))) |
14 | 13 | ad2antrr 722 |
. . . 4
⊢ (((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ∃𝑡(𝑡:(0..^𝑁)–1-1-onto→𝐷 ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁))))) |
15 | 9 | ad4antr 728 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → 𝐷 ∈ Fin) |
16 | | simp-4r 780 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → 𝑞:(0..^𝑁)–1-1-onto→𝐷) |
17 | | f1ocnv 6712 |
. . . . . . . . 9
⊢ (𝑡:(0..^𝑁)–1-1-onto→𝐷 → ◡𝑡:𝐷–1-1-onto→(0..^𝑁)) |
18 | 17 | ad2antlr 723 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ◡𝑡:𝐷–1-1-onto→(0..^𝑁)) |
19 | | f1oco 6722 |
. . . . . . . 8
⊢ ((𝑞:(0..^𝑁)–1-1-onto→𝐷 ∧ ◡𝑡:𝐷–1-1-onto→(0..^𝑁)) → (𝑞 ∘ ◡𝑡):𝐷–1-1-onto→𝐷) |
20 | 16, 18, 19 | syl2anc 583 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (𝑞 ∘ ◡𝑡):𝐷–1-1-onto→𝐷) |
21 | 2, 5 | elsymgbas 18896 |
. . . . . . . 8
⊢ (𝐷 ∈ Fin → ((𝑞 ∘ ◡𝑡) ∈ 𝐵 ↔ (𝑞 ∘ ◡𝑡):𝐷–1-1-onto→𝐷)) |
22 | 21 | biimpar 477 |
. . . . . . 7
⊢ ((𝐷 ∈ Fin ∧ (𝑞 ∘ ◡𝑡):𝐷–1-1-onto→𝐷) → (𝑞 ∘ ◡𝑡) ∈ 𝐵) |
23 | 15, 20, 22 | syl2anc 583 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (𝑞 ∘ ◡𝑡) ∈ 𝐵) |
24 | | simpr 484 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑝 = (𝑞 ∘ ◡𝑡)) → 𝑝 = (𝑞 ∘ ◡𝑡)) |
25 | 24 | oveq1d 7270 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑝 = (𝑞 ∘ ◡𝑡)) → (𝑝 + 𝑇) = ((𝑞 ∘ ◡𝑡) + 𝑇)) |
26 | 25, 24 | oveq12d 7273 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑝 = (𝑞 ∘ ◡𝑡)) → ((𝑝 + 𝑇) − 𝑝) = (((𝑞 ∘ ◡𝑡) + 𝑇) − (𝑞 ∘ ◡𝑡))) |
27 | 26 | eqeq2d 2749 |
. . . . . 6
⊢
((((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑝 = (𝑞 ∘ ◡𝑡)) → (𝑄 = ((𝑝 + 𝑇) − 𝑝) ↔ 𝑄 = (((𝑞 ∘ ◡𝑡) + 𝑇) − (𝑞 ∘ ◡𝑡)))) |
28 | | simpllr 772 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) |
29 | | simpr 484 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) |
30 | 28, 29 | eqtr4d 2781 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((◡𝑡 ∘ 𝑇) ∘ 𝑡)) |
31 | 30 | coeq1d 5759 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (((◡𝑞 ∘ 𝑄) ∘ 𝑞) ∘ ◡𝑞) = (((◡𝑡 ∘ 𝑇) ∘ 𝑡) ∘ ◡𝑞)) |
32 | 31 | coeq2d 5760 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (𝑞 ∘ (((◡𝑞 ∘ 𝑄) ∘ 𝑞) ∘ ◡𝑞)) = (𝑞 ∘ (((◡𝑡 ∘ 𝑇) ∘ 𝑡) ∘ ◡𝑞))) |
33 | | coass 6158 |
. . . . . . . . 9
⊢ ((𝑞 ∘ (◡𝑞 ∘ 𝑄)) ∘ (𝑞 ∘ ◡𝑞)) = (𝑞 ∘ ((◡𝑞 ∘ 𝑄) ∘ (𝑞 ∘ ◡𝑞))) |
34 | | coass 6158 |
. . . . . . . . . 10
⊢ ((𝑞 ∘ ◡𝑞) ∘ 𝑄) = (𝑞 ∘ (◡𝑞 ∘ 𝑄)) |
35 | 34 | coeq1i 5757 |
. . . . . . . . 9
⊢ (((𝑞 ∘ ◡𝑞) ∘ 𝑄) ∘ (𝑞 ∘ ◡𝑞)) = ((𝑞 ∘ (◡𝑞 ∘ 𝑄)) ∘ (𝑞 ∘ ◡𝑞)) |
36 | | coass 6158 |
. . . . . . . . . 10
⊢ (((◡𝑞 ∘ 𝑄) ∘ 𝑞) ∘ ◡𝑞) = ((◡𝑞 ∘ 𝑄) ∘ (𝑞 ∘ ◡𝑞)) |
37 | 36 | coeq2i 5758 |
. . . . . . . . 9
⊢ (𝑞 ∘ (((◡𝑞 ∘ 𝑄) ∘ 𝑞) ∘ ◡𝑞)) = (𝑞 ∘ ((◡𝑞 ∘ 𝑄) ∘ (𝑞 ∘ ◡𝑞))) |
38 | 33, 35, 37 | 3eqtr4ri 2777 |
. . . . . . . 8
⊢ (𝑞 ∘ (((◡𝑞 ∘ 𝑄) ∘ 𝑞) ∘ ◡𝑞)) = (((𝑞 ∘ ◡𝑞) ∘ 𝑄) ∘ (𝑞 ∘ ◡𝑞)) |
39 | | f1ococnv2 6726 |
. . . . . . . . . . . . 13
⊢ (𝑞:(0..^𝑁)–1-1-onto→𝐷 → (𝑞 ∘ ◡𝑞) = ( I ↾ 𝐷)) |
40 | 16, 39 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (𝑞 ∘ ◡𝑞) = ( I ↾ 𝐷)) |
41 | 40 | coeq1d 5759 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((𝑞 ∘ ◡𝑞) ∘ 𝑄) = (( I ↾ 𝐷) ∘ 𝑄)) |
42 | 1, 2, 3, 4, 5 | cycpmgcl 31322 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ Fin ∧ 𝑃 ∈ (0...𝑁)) → 𝐶 ⊆ 𝐵) |
43 | 9, 8, 42 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
44 | 43, 10 | sseldd 3918 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑄 ∈ 𝐵) |
45 | 2, 5 | elsymgbas 18896 |
. . . . . . . . . . . . . . 15
⊢ (𝐷 ∈ Fin → (𝑄 ∈ 𝐵 ↔ 𝑄:𝐷–1-1-onto→𝐷)) |
46 | 45 | biimpa 476 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐵) → 𝑄:𝐷–1-1-onto→𝐷) |
47 | 9, 44, 46 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑄:𝐷–1-1-onto→𝐷) |
48 | | f1of 6700 |
. . . . . . . . . . . . 13
⊢ (𝑄:𝐷–1-1-onto→𝐷 → 𝑄:𝐷⟶𝐷) |
49 | | fcoi2 6633 |
. . . . . . . . . . . . 13
⊢ (𝑄:𝐷⟶𝐷 → (( I ↾ 𝐷) ∘ 𝑄) = 𝑄) |
50 | 47, 48, 49 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → (( I ↾ 𝐷) ∘ 𝑄) = 𝑄) |
51 | 50 | ad4antr 728 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (( I ↾ 𝐷) ∘ 𝑄) = 𝑄) |
52 | 41, 51 | eqtrd 2778 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((𝑞 ∘ ◡𝑞) ∘ 𝑄) = 𝑄) |
53 | 52, 40 | coeq12d 5762 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (((𝑞 ∘ ◡𝑞) ∘ 𝑄) ∘ (𝑞 ∘ ◡𝑞)) = (𝑄 ∘ ( I ↾ 𝐷))) |
54 | | fcoi1 6632 |
. . . . . . . . . . 11
⊢ (𝑄:𝐷⟶𝐷 → (𝑄 ∘ ( I ↾ 𝐷)) = 𝑄) |
55 | 47, 48, 54 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄 ∘ ( I ↾ 𝐷)) = 𝑄) |
56 | 55 | ad4antr 728 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (𝑄 ∘ ( I ↾ 𝐷)) = 𝑄) |
57 | 53, 56 | eqtrd 2778 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (((𝑞 ∘ ◡𝑞) ∘ 𝑄) ∘ (𝑞 ∘ ◡𝑞)) = 𝑄) |
58 | 38, 57 | syl5eq 2791 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (𝑞 ∘ (((◡𝑞 ∘ 𝑄) ∘ 𝑞) ∘ ◡𝑞)) = 𝑄) |
59 | | coass 6158 |
. . . . . . . . 9
⊢ ((𝑞 ∘ (◡𝑡 ∘ 𝑇)) ∘ (𝑡 ∘ ◡𝑞)) = (𝑞 ∘ ((◡𝑡 ∘ 𝑇) ∘ (𝑡 ∘ ◡𝑞))) |
60 | | coass 6158 |
. . . . . . . . . 10
⊢ ((𝑞 ∘ ◡𝑡) ∘ 𝑇) = (𝑞 ∘ (◡𝑡 ∘ 𝑇)) |
61 | 60 | coeq1i 5757 |
. . . . . . . . 9
⊢ (((𝑞 ∘ ◡𝑡) ∘ 𝑇) ∘ (𝑡 ∘ ◡𝑞)) = ((𝑞 ∘ (◡𝑡 ∘ 𝑇)) ∘ (𝑡 ∘ ◡𝑞)) |
62 | | coass 6158 |
. . . . . . . . . 10
⊢ (((◡𝑡 ∘ 𝑇) ∘ 𝑡) ∘ ◡𝑞) = ((◡𝑡 ∘ 𝑇) ∘ (𝑡 ∘ ◡𝑞)) |
63 | 62 | coeq2i 5758 |
. . . . . . . . 9
⊢ (𝑞 ∘ (((◡𝑡 ∘ 𝑇) ∘ 𝑡) ∘ ◡𝑞)) = (𝑞 ∘ ((◡𝑡 ∘ 𝑇) ∘ (𝑡 ∘ ◡𝑞))) |
64 | 59, 61, 63 | 3eqtr4i 2776 |
. . . . . . . 8
⊢ (((𝑞 ∘ ◡𝑡) ∘ 𝑇) ∘ (𝑡 ∘ ◡𝑞)) = (𝑞 ∘ (((◡𝑡 ∘ 𝑇) ∘ 𝑡) ∘ ◡𝑞)) |
65 | 43, 12 | sseldd 3918 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 ∈ 𝐵) |
66 | 65 | ad4antr 728 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → 𝑇 ∈ 𝐵) |
67 | 2, 5, 6 | symgov 18906 |
. . . . . . . . . . 11
⊢ (((𝑞 ∘ ◡𝑡) ∈ 𝐵 ∧ 𝑇 ∈ 𝐵) → ((𝑞 ∘ ◡𝑡) + 𝑇) = ((𝑞 ∘ ◡𝑡) ∘ 𝑇)) |
68 | 23, 66, 67 | syl2anc 583 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((𝑞 ∘ ◡𝑡) + 𝑇) = ((𝑞 ∘ ◡𝑡) ∘ 𝑇)) |
69 | 68 | oveq1d 7270 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (((𝑞 ∘ ◡𝑡) + 𝑇) − (𝑞 ∘ ◡𝑡)) = (((𝑞 ∘ ◡𝑡) ∘ 𝑇) − (𝑞 ∘ ◡𝑡))) |
70 | 2 | symggrp 18923 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ Fin → 𝑆 ∈ Grp) |
71 | 9, 70 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆 ∈ Grp) |
72 | 71 | ad4antr 728 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → 𝑆 ∈ Grp) |
73 | 5, 6 | grpcl 18500 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ Grp ∧ (𝑞 ∘ ◡𝑡) ∈ 𝐵 ∧ 𝑇 ∈ 𝐵) → ((𝑞 ∘ ◡𝑡) + 𝑇) ∈ 𝐵) |
74 | 72, 23, 66, 73 | syl3anc 1369 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((𝑞 ∘ ◡𝑡) + 𝑇) ∈ 𝐵) |
75 | 68, 74 | eqeltrrd 2840 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((𝑞 ∘ ◡𝑡) ∘ 𝑇) ∈ 𝐵) |
76 | 2, 5, 7 | symgsubg 31258 |
. . . . . . . . . 10
⊢ ((((𝑞 ∘ ◡𝑡) ∘ 𝑇) ∈ 𝐵 ∧ (𝑞 ∘ ◡𝑡) ∈ 𝐵) → (((𝑞 ∘ ◡𝑡) ∘ 𝑇) − (𝑞 ∘ ◡𝑡)) = (((𝑞 ∘ ◡𝑡) ∘ 𝑇) ∘ ◡(𝑞 ∘ ◡𝑡))) |
77 | 75, 23, 76 | syl2anc 583 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (((𝑞 ∘ ◡𝑡) ∘ 𝑇) − (𝑞 ∘ ◡𝑡)) = (((𝑞 ∘ ◡𝑡) ∘ 𝑇) ∘ ◡(𝑞 ∘ ◡𝑡))) |
78 | | cnvco 5783 |
. . . . . . . . . . . 12
⊢ ◡(𝑞 ∘ ◡𝑡) = (◡◡𝑡 ∘ ◡𝑞) |
79 | | f1orel 6703 |
. . . . . . . . . . . . . 14
⊢ (𝑡:(0..^𝑁)–1-1-onto→𝐷 → Rel 𝑡) |
80 | | dfrel2 6081 |
. . . . . . . . . . . . . 14
⊢ (Rel
𝑡 ↔ ◡◡𝑡 = 𝑡) |
81 | 79, 80 | sylib 217 |
. . . . . . . . . . . . 13
⊢ (𝑡:(0..^𝑁)–1-1-onto→𝐷 → ◡◡𝑡 = 𝑡) |
82 | 81 | coeq1d 5759 |
. . . . . . . . . . . 12
⊢ (𝑡:(0..^𝑁)–1-1-onto→𝐷 → (◡◡𝑡 ∘ ◡𝑞) = (𝑡 ∘ ◡𝑞)) |
83 | 78, 82 | syl5eq 2791 |
. . . . . . . . . . 11
⊢ (𝑡:(0..^𝑁)–1-1-onto→𝐷 → ◡(𝑞 ∘ ◡𝑡) = (𝑡 ∘ ◡𝑞)) |
84 | 83 | coeq2d 5760 |
. . . . . . . . . 10
⊢ (𝑡:(0..^𝑁)–1-1-onto→𝐷 → (((𝑞 ∘ ◡𝑡) ∘ 𝑇) ∘ ◡(𝑞 ∘ ◡𝑡)) = (((𝑞 ∘ ◡𝑡) ∘ 𝑇) ∘ (𝑡 ∘ ◡𝑞))) |
85 | 84 | ad2antlr 723 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (((𝑞 ∘ ◡𝑡) ∘ 𝑇) ∘ ◡(𝑞 ∘ ◡𝑡)) = (((𝑞 ∘ ◡𝑡) ∘ 𝑇) ∘ (𝑡 ∘ ◡𝑞))) |
86 | 69, 77, 85 | 3eqtrrd 2783 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (((𝑞 ∘ ◡𝑡) ∘ 𝑇) ∘ (𝑡 ∘ ◡𝑞)) = (((𝑞 ∘ ◡𝑡) + 𝑇) − (𝑞 ∘ ◡𝑡))) |
87 | 64, 86 | eqtr3id 2793 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (𝑞 ∘ (((◡𝑡 ∘ 𝑇) ∘ 𝑡) ∘ ◡𝑞)) = (((𝑞 ∘ ◡𝑡) + 𝑇) − (𝑞 ∘ ◡𝑡))) |
88 | 32, 58, 87 | 3eqtr3d 2786 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → 𝑄 = (((𝑞 ∘ ◡𝑡) + 𝑇) − (𝑞 ∘ ◡𝑡))) |
89 | 23, 27, 88 | rspcedvd 3555 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ∃𝑝 ∈ 𝐵 𝑄 = ((𝑝 + 𝑇) − 𝑝)) |
90 | 89 | anasss 466 |
. . . 4
⊢ ((((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ (𝑡:(0..^𝑁)–1-1-onto→𝐷 ∧ ((◡𝑡 ∘ 𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁))))) → ∃𝑝 ∈ 𝐵 𝑄 = ((𝑝 + 𝑇) − 𝑝)) |
91 | 14, 90 | exlimddv 1939 |
. . 3
⊢ (((𝜑 ∧ 𝑞:(0..^𝑁)–1-1-onto→𝐷) ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ∃𝑝 ∈ 𝐵 𝑄 = ((𝑝 + 𝑇) − 𝑝)) |
92 | 91 | anasss 466 |
. 2
⊢ ((𝜑 ∧ (𝑞:(0..^𝑁)–1-1-onto→𝐷 ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁))))) → ∃𝑝 ∈ 𝐵 𝑄 = ((𝑝 + 𝑇) − 𝑝)) |
93 | 11, 92 | exlimddv 1939 |
1
⊢ (𝜑 → ∃𝑝 ∈ 𝐵 𝑄 = ((𝑝 + 𝑇) − 𝑝)) |