Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmconjs Structured version   Visualization version   GIF version

Theorem cycpmconjs 33119
Description: All cycles of the same length are conjugate in the symmetric group. (Contributed by Thierry Arnoux, 14-Oct-2023.)
Hypotheses
Ref Expression
cycpmconjs.c 𝐶 = (𝑀 “ (♯ “ {𝑃}))
cycpmconjs.s 𝑆 = (SymGrp‘𝐷)
cycpmconjs.n 𝑁 = (♯‘𝐷)
cycpmconjs.m 𝑀 = (toCyc‘𝐷)
cycpmconjs.b 𝐵 = (Base‘𝑆)
cycpmconjs.a + = (+g𝑆)
cycpmconjs.l = (-g𝑆)
cycpmconjs.p (𝜑𝑃 ∈ (0...𝑁))
cycpmconjs.d (𝜑𝐷 ∈ Fin)
cycpmconjs.q (𝜑𝑄𝐶)
cycpmconjs.t (𝜑𝑇𝐶)
Assertion
Ref Expression
cycpmconjs (𝜑 → ∃𝑝𝐵 𝑄 = ((𝑝 + 𝑇) 𝑝))
Distinct variable groups:   + ,𝑝   ,𝑝   𝐵,𝑝   𝐷,𝑝   𝑀,𝑝   𝑁,𝑝   𝑃,𝑝   𝑄,𝑝   𝑇,𝑝   𝜑,𝑝
Allowed substitution hints:   𝐶(𝑝)   𝑆(𝑝)

Proof of Theorem cycpmconjs
Dummy variables 𝑞 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycpmconjs.c . . 3 𝐶 = (𝑀 “ (♯ “ {𝑃}))
2 cycpmconjs.s . . 3 𝑆 = (SymGrp‘𝐷)
3 cycpmconjs.n . . 3 𝑁 = (♯‘𝐷)
4 cycpmconjs.m . . 3 𝑀 = (toCyc‘𝐷)
5 cycpmconjs.b . . 3 𝐵 = (Base‘𝑆)
6 cycpmconjs.a . . 3 + = (+g𝑆)
7 cycpmconjs.l . . 3 = (-g𝑆)
8 cycpmconjs.p . . 3 (𝜑𝑃 ∈ (0...𝑁))
9 cycpmconjs.d . . 3 (𝜑𝐷 ∈ Fin)
10 cycpmconjs.q . . 3 (𝜑𝑄𝐶)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10cycpmconjslem2 33118 . 2 (𝜑 → ∃𝑞(𝑞:(0..^𝑁)–1-1-onto𝐷 ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))))
12 cycpmconjs.t . . . . . 6 (𝜑𝑇𝐶)
131, 2, 3, 4, 5, 6, 7, 8, 9, 12cycpmconjslem2 33118 . . . . 5 (𝜑 → ∃𝑡(𝑡:(0..^𝑁)–1-1-onto𝐷 ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))))
1413ad2antrr 726 . . . 4 (((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ∃𝑡(𝑡:(0..^𝑁)–1-1-onto𝐷 ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))))
159ad4antr 732 . . . . . . 7 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → 𝐷 ∈ Fin)
16 simp-4r 783 . . . . . . . 8 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → 𝑞:(0..^𝑁)–1-1-onto𝐷)
17 f1ocnv 6814 . . . . . . . . 9 (𝑡:(0..^𝑁)–1-1-onto𝐷𝑡:𝐷1-1-onto→(0..^𝑁))
1817ad2antlr 727 . . . . . . . 8 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → 𝑡:𝐷1-1-onto→(0..^𝑁))
19 f1oco 6825 . . . . . . . 8 ((𝑞:(0..^𝑁)–1-1-onto𝐷𝑡:𝐷1-1-onto→(0..^𝑁)) → (𝑞𝑡):𝐷1-1-onto𝐷)
2016, 18, 19syl2anc 584 . . . . . . 7 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (𝑞𝑡):𝐷1-1-onto𝐷)
212, 5elsymgbas 19310 . . . . . . . 8 (𝐷 ∈ Fin → ((𝑞𝑡) ∈ 𝐵 ↔ (𝑞𝑡):𝐷1-1-onto𝐷))
2221biimpar 477 . . . . . . 7 ((𝐷 ∈ Fin ∧ (𝑞𝑡):𝐷1-1-onto𝐷) → (𝑞𝑡) ∈ 𝐵)
2315, 20, 22syl2anc 584 . . . . . 6 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (𝑞𝑡) ∈ 𝐵)
24 simpr 484 . . . . . . . . 9 ((((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑝 = (𝑞𝑡)) → 𝑝 = (𝑞𝑡))
2524oveq1d 7404 . . . . . . . 8 ((((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑝 = (𝑞𝑡)) → (𝑝 + 𝑇) = ((𝑞𝑡) + 𝑇))
2625, 24oveq12d 7407 . . . . . . 7 ((((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑝 = (𝑞𝑡)) → ((𝑝 + 𝑇) 𝑝) = (((𝑞𝑡) + 𝑇) (𝑞𝑡)))
2726eqeq2d 2741 . . . . . 6 ((((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑝 = (𝑞𝑡)) → (𝑄 = ((𝑝 + 𝑇) 𝑝) ↔ 𝑄 = (((𝑞𝑡) + 𝑇) (𝑞𝑡))))
28 simpllr 775 . . . . . . . . . 10 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁))))
29 simpr 484 . . . . . . . . . 10 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁))))
3028, 29eqtr4d 2768 . . . . . . . . 9 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((𝑞𝑄) ∘ 𝑞) = ((𝑡𝑇) ∘ 𝑡))
3130coeq1d 5827 . . . . . . . 8 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (((𝑞𝑄) ∘ 𝑞) ∘ 𝑞) = (((𝑡𝑇) ∘ 𝑡) ∘ 𝑞))
3231coeq2d 5828 . . . . . . 7 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (𝑞 ∘ (((𝑞𝑄) ∘ 𝑞) ∘ 𝑞)) = (𝑞 ∘ (((𝑡𝑇) ∘ 𝑡) ∘ 𝑞)))
33 coass 6240 . . . . . . . . 9 ((𝑞 ∘ (𝑞𝑄)) ∘ (𝑞𝑞)) = (𝑞 ∘ ((𝑞𝑄) ∘ (𝑞𝑞)))
34 coass 6240 . . . . . . . . . 10 ((𝑞𝑞) ∘ 𝑄) = (𝑞 ∘ (𝑞𝑄))
3534coeq1i 5825 . . . . . . . . 9 (((𝑞𝑞) ∘ 𝑄) ∘ (𝑞𝑞)) = ((𝑞 ∘ (𝑞𝑄)) ∘ (𝑞𝑞))
36 coass 6240 . . . . . . . . . 10 (((𝑞𝑄) ∘ 𝑞) ∘ 𝑞) = ((𝑞𝑄) ∘ (𝑞𝑞))
3736coeq2i 5826 . . . . . . . . 9 (𝑞 ∘ (((𝑞𝑄) ∘ 𝑞) ∘ 𝑞)) = (𝑞 ∘ ((𝑞𝑄) ∘ (𝑞𝑞)))
3833, 35, 373eqtr4ri 2764 . . . . . . . 8 (𝑞 ∘ (((𝑞𝑄) ∘ 𝑞) ∘ 𝑞)) = (((𝑞𝑞) ∘ 𝑄) ∘ (𝑞𝑞))
39 f1ococnv2 6829 . . . . . . . . . . . . 13 (𝑞:(0..^𝑁)–1-1-onto𝐷 → (𝑞𝑞) = ( I ↾ 𝐷))
4016, 39syl 17 . . . . . . . . . . . 12 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (𝑞𝑞) = ( I ↾ 𝐷))
4140coeq1d 5827 . . . . . . . . . . 11 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((𝑞𝑞) ∘ 𝑄) = (( I ↾ 𝐷) ∘ 𝑄))
421, 2, 3, 4, 5cycpmgcl 33116 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ Fin ∧ 𝑃 ∈ (0...𝑁)) → 𝐶𝐵)
439, 8, 42syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑𝐶𝐵)
4443, 10sseldd 3949 . . . . . . . . . . . . . 14 (𝜑𝑄𝐵)
452, 5elsymgbas 19310 . . . . . . . . . . . . . . 15 (𝐷 ∈ Fin → (𝑄𝐵𝑄:𝐷1-1-onto𝐷))
4645biimpa 476 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑄𝐵) → 𝑄:𝐷1-1-onto𝐷)
479, 44, 46syl2anc 584 . . . . . . . . . . . . 13 (𝜑𝑄:𝐷1-1-onto𝐷)
48 f1of 6802 . . . . . . . . . . . . 13 (𝑄:𝐷1-1-onto𝐷𝑄:𝐷𝐷)
49 fcoi2 6737 . . . . . . . . . . . . 13 (𝑄:𝐷𝐷 → (( I ↾ 𝐷) ∘ 𝑄) = 𝑄)
5047, 48, 493syl 18 . . . . . . . . . . . 12 (𝜑 → (( I ↾ 𝐷) ∘ 𝑄) = 𝑄)
5150ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (( I ↾ 𝐷) ∘ 𝑄) = 𝑄)
5241, 51eqtrd 2765 . . . . . . . . . 10 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((𝑞𝑞) ∘ 𝑄) = 𝑄)
5352, 40coeq12d 5830 . . . . . . . . 9 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (((𝑞𝑞) ∘ 𝑄) ∘ (𝑞𝑞)) = (𝑄 ∘ ( I ↾ 𝐷)))
54 fcoi1 6736 . . . . . . . . . . 11 (𝑄:𝐷𝐷 → (𝑄 ∘ ( I ↾ 𝐷)) = 𝑄)
5547, 48, 543syl 18 . . . . . . . . . 10 (𝜑 → (𝑄 ∘ ( I ↾ 𝐷)) = 𝑄)
5655ad4antr 732 . . . . . . . . 9 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (𝑄 ∘ ( I ↾ 𝐷)) = 𝑄)
5753, 56eqtrd 2765 . . . . . . . 8 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (((𝑞𝑞) ∘ 𝑄) ∘ (𝑞𝑞)) = 𝑄)
5838, 57eqtrid 2777 . . . . . . 7 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (𝑞 ∘ (((𝑞𝑄) ∘ 𝑞) ∘ 𝑞)) = 𝑄)
59 coass 6240 . . . . . . . . 9 ((𝑞 ∘ (𝑡𝑇)) ∘ (𝑡𝑞)) = (𝑞 ∘ ((𝑡𝑇) ∘ (𝑡𝑞)))
60 coass 6240 . . . . . . . . . 10 ((𝑞𝑡) ∘ 𝑇) = (𝑞 ∘ (𝑡𝑇))
6160coeq1i 5825 . . . . . . . . 9 (((𝑞𝑡) ∘ 𝑇) ∘ (𝑡𝑞)) = ((𝑞 ∘ (𝑡𝑇)) ∘ (𝑡𝑞))
62 coass 6240 . . . . . . . . . 10 (((𝑡𝑇) ∘ 𝑡) ∘ 𝑞) = ((𝑡𝑇) ∘ (𝑡𝑞))
6362coeq2i 5826 . . . . . . . . 9 (𝑞 ∘ (((𝑡𝑇) ∘ 𝑡) ∘ 𝑞)) = (𝑞 ∘ ((𝑡𝑇) ∘ (𝑡𝑞)))
6459, 61, 633eqtr4i 2763 . . . . . . . 8 (((𝑞𝑡) ∘ 𝑇) ∘ (𝑡𝑞)) = (𝑞 ∘ (((𝑡𝑇) ∘ 𝑡) ∘ 𝑞))
6543, 12sseldd 3949 . . . . . . . . . . . 12 (𝜑𝑇𝐵)
6665ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → 𝑇𝐵)
672, 5, 6symgov 19320 . . . . . . . . . . 11 (((𝑞𝑡) ∈ 𝐵𝑇𝐵) → ((𝑞𝑡) + 𝑇) = ((𝑞𝑡) ∘ 𝑇))
6823, 66, 67syl2anc 584 . . . . . . . . . 10 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((𝑞𝑡) + 𝑇) = ((𝑞𝑡) ∘ 𝑇))
6968oveq1d 7404 . . . . . . . . 9 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (((𝑞𝑡) + 𝑇) (𝑞𝑡)) = (((𝑞𝑡) ∘ 𝑇) (𝑞𝑡)))
702symggrp 19336 . . . . . . . . . . . . . 14 (𝐷 ∈ Fin → 𝑆 ∈ Grp)
719, 70syl 17 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ Grp)
7271ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → 𝑆 ∈ Grp)
735, 6grpcl 18879 . . . . . . . . . . . 12 ((𝑆 ∈ Grp ∧ (𝑞𝑡) ∈ 𝐵𝑇𝐵) → ((𝑞𝑡) + 𝑇) ∈ 𝐵)
7472, 23, 66, 73syl3anc 1373 . . . . . . . . . . 11 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((𝑞𝑡) + 𝑇) ∈ 𝐵)
7568, 74eqeltrrd 2830 . . . . . . . . . 10 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((𝑞𝑡) ∘ 𝑇) ∈ 𝐵)
762, 5, 7symgsubg 33050 . . . . . . . . . 10 ((((𝑞𝑡) ∘ 𝑇) ∈ 𝐵 ∧ (𝑞𝑡) ∈ 𝐵) → (((𝑞𝑡) ∘ 𝑇) (𝑞𝑡)) = (((𝑞𝑡) ∘ 𝑇) ∘ (𝑞𝑡)))
7775, 23, 76syl2anc 584 . . . . . . . . 9 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (((𝑞𝑡) ∘ 𝑇) (𝑞𝑡)) = (((𝑞𝑡) ∘ 𝑇) ∘ (𝑞𝑡)))
78 cnvco 5851 . . . . . . . . . . . 12 (𝑞𝑡) = (𝑡𝑞)
79 f1orel 6805 . . . . . . . . . . . . . 14 (𝑡:(0..^𝑁)–1-1-onto𝐷 → Rel 𝑡)
80 dfrel2 6164 . . . . . . . . . . . . . 14 (Rel 𝑡𝑡 = 𝑡)
8179, 80sylib 218 . . . . . . . . . . . . 13 (𝑡:(0..^𝑁)–1-1-onto𝐷𝑡 = 𝑡)
8281coeq1d 5827 . . . . . . . . . . . 12 (𝑡:(0..^𝑁)–1-1-onto𝐷 → (𝑡𝑞) = (𝑡𝑞))
8378, 82eqtrid 2777 . . . . . . . . . . 11 (𝑡:(0..^𝑁)–1-1-onto𝐷(𝑞𝑡) = (𝑡𝑞))
8483coeq2d 5828 . . . . . . . . . 10 (𝑡:(0..^𝑁)–1-1-onto𝐷 → (((𝑞𝑡) ∘ 𝑇) ∘ (𝑞𝑡)) = (((𝑞𝑡) ∘ 𝑇) ∘ (𝑡𝑞)))
8584ad2antlr 727 . . . . . . . . 9 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (((𝑞𝑡) ∘ 𝑇) ∘ (𝑞𝑡)) = (((𝑞𝑡) ∘ 𝑇) ∘ (𝑡𝑞)))
8669, 77, 853eqtrrd 2770 . . . . . . . 8 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (((𝑞𝑡) ∘ 𝑇) ∘ (𝑡𝑞)) = (((𝑞𝑡) + 𝑇) (𝑞𝑡)))
8764, 86eqtr3id 2779 . . . . . . 7 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (𝑞 ∘ (((𝑡𝑇) ∘ 𝑡) ∘ 𝑞)) = (((𝑞𝑡) + 𝑇) (𝑞𝑡)))
8832, 58, 873eqtr3d 2773 . . . . . 6 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → 𝑄 = (((𝑞𝑡) + 𝑇) (𝑞𝑡)))
8923, 27, 88rspcedvd 3593 . . . . 5 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ∃𝑝𝐵 𝑄 = ((𝑝 + 𝑇) 𝑝))
9089anasss 466 . . . 4 ((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ (𝑡:(0..^𝑁)–1-1-onto𝐷 ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁))))) → ∃𝑝𝐵 𝑄 = ((𝑝 + 𝑇) 𝑝))
9114, 90exlimddv 1935 . . 3 (((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ∃𝑝𝐵 𝑄 = ((𝑝 + 𝑇) 𝑝))
9291anasss 466 . 2 ((𝜑 ∧ (𝑞:(0..^𝑁)–1-1-onto𝐷 ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁))))) → ∃𝑝𝐵 𝑄 = ((𝑝 + 𝑇) 𝑝))
9311, 92exlimddv 1935 1 (𝜑 → ∃𝑝𝐵 𝑄 = ((𝑝 + 𝑇) 𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3054  cun 3914  wss 3916  {csn 4591   I cid 5534  ccnv 5639  cres 5642  cima 5643  ccom 5644  Rel wrel 5645  wf 6509  1-1-ontowf1o 6512  cfv 6513  (class class class)co 7389  Fincfn 8920  0cc0 11074  1c1 11075  ...cfz 13474  ..^cfzo 13621  chash 14301   cyclShift ccsh 14759  Basecbs 17185  +gcplusg 17226  Grpcgrp 18871  -gcsg 18873  SymGrpcsymg 19305  toCycctocyc 33069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-oadd 8440  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-sup 9399  df-inf 9400  df-dju 9860  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-xnn0 12522  df-z 12536  df-uz 12800  df-rp 12958  df-fz 13475  df-fzo 13622  df-fl 13760  df-mod 13838  df-hash 14302  df-word 14485  df-concat 14542  df-substr 14612  df-pfx 14642  df-csh 14760  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-tset 17245  df-0g 17410  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-submnd 18717  df-efmnd 18802  df-grp 18874  df-minusg 18875  df-sbg 18876  df-symg 19306  df-tocyc 33070
This theorem is referenced by:  cyc3conja  33120
  Copyright terms: Public domain W3C validator