Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmconjs Structured version   Visualization version   GIF version

Theorem cycpmconjs 31325
Description: All cycles of the same length are conjugate in the symmetric group. (Contributed by Thierry Arnoux, 14-Oct-2023.)
Hypotheses
Ref Expression
cycpmconjs.c 𝐶 = (𝑀 “ (♯ “ {𝑃}))
cycpmconjs.s 𝑆 = (SymGrp‘𝐷)
cycpmconjs.n 𝑁 = (♯‘𝐷)
cycpmconjs.m 𝑀 = (toCyc‘𝐷)
cycpmconjs.b 𝐵 = (Base‘𝑆)
cycpmconjs.a + = (+g𝑆)
cycpmconjs.l = (-g𝑆)
cycpmconjs.p (𝜑𝑃 ∈ (0...𝑁))
cycpmconjs.d (𝜑𝐷 ∈ Fin)
cycpmconjs.q (𝜑𝑄𝐶)
cycpmconjs.t (𝜑𝑇𝐶)
Assertion
Ref Expression
cycpmconjs (𝜑 → ∃𝑝𝐵 𝑄 = ((𝑝 + 𝑇) 𝑝))
Distinct variable groups:   + ,𝑝   ,𝑝   𝐵,𝑝   𝐷,𝑝   𝑀,𝑝   𝑁,𝑝   𝑃,𝑝   𝑄,𝑝   𝑇,𝑝   𝜑,𝑝
Allowed substitution hints:   𝐶(𝑝)   𝑆(𝑝)

Proof of Theorem cycpmconjs
Dummy variables 𝑞 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycpmconjs.c . . 3 𝐶 = (𝑀 “ (♯ “ {𝑃}))
2 cycpmconjs.s . . 3 𝑆 = (SymGrp‘𝐷)
3 cycpmconjs.n . . 3 𝑁 = (♯‘𝐷)
4 cycpmconjs.m . . 3 𝑀 = (toCyc‘𝐷)
5 cycpmconjs.b . . 3 𝐵 = (Base‘𝑆)
6 cycpmconjs.a . . 3 + = (+g𝑆)
7 cycpmconjs.l . . 3 = (-g𝑆)
8 cycpmconjs.p . . 3 (𝜑𝑃 ∈ (0...𝑁))
9 cycpmconjs.d . . 3 (𝜑𝐷 ∈ Fin)
10 cycpmconjs.q . . 3 (𝜑𝑄𝐶)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10cycpmconjslem2 31324 . 2 (𝜑 → ∃𝑞(𝑞:(0..^𝑁)–1-1-onto𝐷 ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))))
12 cycpmconjs.t . . . . . 6 (𝜑𝑇𝐶)
131, 2, 3, 4, 5, 6, 7, 8, 9, 12cycpmconjslem2 31324 . . . . 5 (𝜑 → ∃𝑡(𝑡:(0..^𝑁)–1-1-onto𝐷 ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))))
1413ad2antrr 722 . . . 4 (((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ∃𝑡(𝑡:(0..^𝑁)–1-1-onto𝐷 ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))))
159ad4antr 728 . . . . . . 7 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → 𝐷 ∈ Fin)
16 simp-4r 780 . . . . . . . 8 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → 𝑞:(0..^𝑁)–1-1-onto𝐷)
17 f1ocnv 6712 . . . . . . . . 9 (𝑡:(0..^𝑁)–1-1-onto𝐷𝑡:𝐷1-1-onto→(0..^𝑁))
1817ad2antlr 723 . . . . . . . 8 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → 𝑡:𝐷1-1-onto→(0..^𝑁))
19 f1oco 6722 . . . . . . . 8 ((𝑞:(0..^𝑁)–1-1-onto𝐷𝑡:𝐷1-1-onto→(0..^𝑁)) → (𝑞𝑡):𝐷1-1-onto𝐷)
2016, 18, 19syl2anc 583 . . . . . . 7 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (𝑞𝑡):𝐷1-1-onto𝐷)
212, 5elsymgbas 18896 . . . . . . . 8 (𝐷 ∈ Fin → ((𝑞𝑡) ∈ 𝐵 ↔ (𝑞𝑡):𝐷1-1-onto𝐷))
2221biimpar 477 . . . . . . 7 ((𝐷 ∈ Fin ∧ (𝑞𝑡):𝐷1-1-onto𝐷) → (𝑞𝑡) ∈ 𝐵)
2315, 20, 22syl2anc 583 . . . . . 6 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (𝑞𝑡) ∈ 𝐵)
24 simpr 484 . . . . . . . . 9 ((((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑝 = (𝑞𝑡)) → 𝑝 = (𝑞𝑡))
2524oveq1d 7270 . . . . . . . 8 ((((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑝 = (𝑞𝑡)) → (𝑝 + 𝑇) = ((𝑞𝑡) + 𝑇))
2625, 24oveq12d 7273 . . . . . . 7 ((((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑝 = (𝑞𝑡)) → ((𝑝 + 𝑇) 𝑝) = (((𝑞𝑡) + 𝑇) (𝑞𝑡)))
2726eqeq2d 2749 . . . . . 6 ((((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑝 = (𝑞𝑡)) → (𝑄 = ((𝑝 + 𝑇) 𝑝) ↔ 𝑄 = (((𝑞𝑡) + 𝑇) (𝑞𝑡))))
28 simpllr 772 . . . . . . . . . 10 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁))))
29 simpr 484 . . . . . . . . . 10 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁))))
3028, 29eqtr4d 2781 . . . . . . . . 9 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((𝑞𝑄) ∘ 𝑞) = ((𝑡𝑇) ∘ 𝑡))
3130coeq1d 5759 . . . . . . . 8 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (((𝑞𝑄) ∘ 𝑞) ∘ 𝑞) = (((𝑡𝑇) ∘ 𝑡) ∘ 𝑞))
3231coeq2d 5760 . . . . . . 7 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (𝑞 ∘ (((𝑞𝑄) ∘ 𝑞) ∘ 𝑞)) = (𝑞 ∘ (((𝑡𝑇) ∘ 𝑡) ∘ 𝑞)))
33 coass 6158 . . . . . . . . 9 ((𝑞 ∘ (𝑞𝑄)) ∘ (𝑞𝑞)) = (𝑞 ∘ ((𝑞𝑄) ∘ (𝑞𝑞)))
34 coass 6158 . . . . . . . . . 10 ((𝑞𝑞) ∘ 𝑄) = (𝑞 ∘ (𝑞𝑄))
3534coeq1i 5757 . . . . . . . . 9 (((𝑞𝑞) ∘ 𝑄) ∘ (𝑞𝑞)) = ((𝑞 ∘ (𝑞𝑄)) ∘ (𝑞𝑞))
36 coass 6158 . . . . . . . . . 10 (((𝑞𝑄) ∘ 𝑞) ∘ 𝑞) = ((𝑞𝑄) ∘ (𝑞𝑞))
3736coeq2i 5758 . . . . . . . . 9 (𝑞 ∘ (((𝑞𝑄) ∘ 𝑞) ∘ 𝑞)) = (𝑞 ∘ ((𝑞𝑄) ∘ (𝑞𝑞)))
3833, 35, 373eqtr4ri 2777 . . . . . . . 8 (𝑞 ∘ (((𝑞𝑄) ∘ 𝑞) ∘ 𝑞)) = (((𝑞𝑞) ∘ 𝑄) ∘ (𝑞𝑞))
39 f1ococnv2 6726 . . . . . . . . . . . . 13 (𝑞:(0..^𝑁)–1-1-onto𝐷 → (𝑞𝑞) = ( I ↾ 𝐷))
4016, 39syl 17 . . . . . . . . . . . 12 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (𝑞𝑞) = ( I ↾ 𝐷))
4140coeq1d 5759 . . . . . . . . . . 11 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((𝑞𝑞) ∘ 𝑄) = (( I ↾ 𝐷) ∘ 𝑄))
421, 2, 3, 4, 5cycpmgcl 31322 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ Fin ∧ 𝑃 ∈ (0...𝑁)) → 𝐶𝐵)
439, 8, 42syl2anc 583 . . . . . . . . . . . . . . 15 (𝜑𝐶𝐵)
4443, 10sseldd 3918 . . . . . . . . . . . . . 14 (𝜑𝑄𝐵)
452, 5elsymgbas 18896 . . . . . . . . . . . . . . 15 (𝐷 ∈ Fin → (𝑄𝐵𝑄:𝐷1-1-onto𝐷))
4645biimpa 476 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑄𝐵) → 𝑄:𝐷1-1-onto𝐷)
479, 44, 46syl2anc 583 . . . . . . . . . . . . 13 (𝜑𝑄:𝐷1-1-onto𝐷)
48 f1of 6700 . . . . . . . . . . . . 13 (𝑄:𝐷1-1-onto𝐷𝑄:𝐷𝐷)
49 fcoi2 6633 . . . . . . . . . . . . 13 (𝑄:𝐷𝐷 → (( I ↾ 𝐷) ∘ 𝑄) = 𝑄)
5047, 48, 493syl 18 . . . . . . . . . . . 12 (𝜑 → (( I ↾ 𝐷) ∘ 𝑄) = 𝑄)
5150ad4antr 728 . . . . . . . . . . 11 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (( I ↾ 𝐷) ∘ 𝑄) = 𝑄)
5241, 51eqtrd 2778 . . . . . . . . . 10 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((𝑞𝑞) ∘ 𝑄) = 𝑄)
5352, 40coeq12d 5762 . . . . . . . . 9 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (((𝑞𝑞) ∘ 𝑄) ∘ (𝑞𝑞)) = (𝑄 ∘ ( I ↾ 𝐷)))
54 fcoi1 6632 . . . . . . . . . . 11 (𝑄:𝐷𝐷 → (𝑄 ∘ ( I ↾ 𝐷)) = 𝑄)
5547, 48, 543syl 18 . . . . . . . . . 10 (𝜑 → (𝑄 ∘ ( I ↾ 𝐷)) = 𝑄)
5655ad4antr 728 . . . . . . . . 9 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (𝑄 ∘ ( I ↾ 𝐷)) = 𝑄)
5753, 56eqtrd 2778 . . . . . . . 8 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (((𝑞𝑞) ∘ 𝑄) ∘ (𝑞𝑞)) = 𝑄)
5838, 57syl5eq 2791 . . . . . . 7 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (𝑞 ∘ (((𝑞𝑄) ∘ 𝑞) ∘ 𝑞)) = 𝑄)
59 coass 6158 . . . . . . . . 9 ((𝑞 ∘ (𝑡𝑇)) ∘ (𝑡𝑞)) = (𝑞 ∘ ((𝑡𝑇) ∘ (𝑡𝑞)))
60 coass 6158 . . . . . . . . . 10 ((𝑞𝑡) ∘ 𝑇) = (𝑞 ∘ (𝑡𝑇))
6160coeq1i 5757 . . . . . . . . 9 (((𝑞𝑡) ∘ 𝑇) ∘ (𝑡𝑞)) = ((𝑞 ∘ (𝑡𝑇)) ∘ (𝑡𝑞))
62 coass 6158 . . . . . . . . . 10 (((𝑡𝑇) ∘ 𝑡) ∘ 𝑞) = ((𝑡𝑇) ∘ (𝑡𝑞))
6362coeq2i 5758 . . . . . . . . 9 (𝑞 ∘ (((𝑡𝑇) ∘ 𝑡) ∘ 𝑞)) = (𝑞 ∘ ((𝑡𝑇) ∘ (𝑡𝑞)))
6459, 61, 633eqtr4i 2776 . . . . . . . 8 (((𝑞𝑡) ∘ 𝑇) ∘ (𝑡𝑞)) = (𝑞 ∘ (((𝑡𝑇) ∘ 𝑡) ∘ 𝑞))
6543, 12sseldd 3918 . . . . . . . . . . . 12 (𝜑𝑇𝐵)
6665ad4antr 728 . . . . . . . . . . 11 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → 𝑇𝐵)
672, 5, 6symgov 18906 . . . . . . . . . . 11 (((𝑞𝑡) ∈ 𝐵𝑇𝐵) → ((𝑞𝑡) + 𝑇) = ((𝑞𝑡) ∘ 𝑇))
6823, 66, 67syl2anc 583 . . . . . . . . . 10 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((𝑞𝑡) + 𝑇) = ((𝑞𝑡) ∘ 𝑇))
6968oveq1d 7270 . . . . . . . . 9 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (((𝑞𝑡) + 𝑇) (𝑞𝑡)) = (((𝑞𝑡) ∘ 𝑇) (𝑞𝑡)))
702symggrp 18923 . . . . . . . . . . . . . 14 (𝐷 ∈ Fin → 𝑆 ∈ Grp)
719, 70syl 17 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ Grp)
7271ad4antr 728 . . . . . . . . . . . 12 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → 𝑆 ∈ Grp)
735, 6grpcl 18500 . . . . . . . . . . . 12 ((𝑆 ∈ Grp ∧ (𝑞𝑡) ∈ 𝐵𝑇𝐵) → ((𝑞𝑡) + 𝑇) ∈ 𝐵)
7472, 23, 66, 73syl3anc 1369 . . . . . . . . . . 11 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((𝑞𝑡) + 𝑇) ∈ 𝐵)
7568, 74eqeltrrd 2840 . . . . . . . . . 10 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((𝑞𝑡) ∘ 𝑇) ∈ 𝐵)
762, 5, 7symgsubg 31258 . . . . . . . . . 10 ((((𝑞𝑡) ∘ 𝑇) ∈ 𝐵 ∧ (𝑞𝑡) ∈ 𝐵) → (((𝑞𝑡) ∘ 𝑇) (𝑞𝑡)) = (((𝑞𝑡) ∘ 𝑇) ∘ (𝑞𝑡)))
7775, 23, 76syl2anc 583 . . . . . . . . 9 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (((𝑞𝑡) ∘ 𝑇) (𝑞𝑡)) = (((𝑞𝑡) ∘ 𝑇) ∘ (𝑞𝑡)))
78 cnvco 5783 . . . . . . . . . . . 12 (𝑞𝑡) = (𝑡𝑞)
79 f1orel 6703 . . . . . . . . . . . . . 14 (𝑡:(0..^𝑁)–1-1-onto𝐷 → Rel 𝑡)
80 dfrel2 6081 . . . . . . . . . . . . . 14 (Rel 𝑡𝑡 = 𝑡)
8179, 80sylib 217 . . . . . . . . . . . . 13 (𝑡:(0..^𝑁)–1-1-onto𝐷𝑡 = 𝑡)
8281coeq1d 5759 . . . . . . . . . . . 12 (𝑡:(0..^𝑁)–1-1-onto𝐷 → (𝑡𝑞) = (𝑡𝑞))
8378, 82syl5eq 2791 . . . . . . . . . . 11 (𝑡:(0..^𝑁)–1-1-onto𝐷(𝑞𝑡) = (𝑡𝑞))
8483coeq2d 5760 . . . . . . . . . 10 (𝑡:(0..^𝑁)–1-1-onto𝐷 → (((𝑞𝑡) ∘ 𝑇) ∘ (𝑞𝑡)) = (((𝑞𝑡) ∘ 𝑇) ∘ (𝑡𝑞)))
8584ad2antlr 723 . . . . . . . . 9 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (((𝑞𝑡) ∘ 𝑇) ∘ (𝑞𝑡)) = (((𝑞𝑡) ∘ 𝑇) ∘ (𝑡𝑞)))
8669, 77, 853eqtrrd 2783 . . . . . . . 8 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (((𝑞𝑡) ∘ 𝑇) ∘ (𝑡𝑞)) = (((𝑞𝑡) + 𝑇) (𝑞𝑡)))
8764, 86eqtr3id 2793 . . . . . . 7 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (𝑞 ∘ (((𝑡𝑇) ∘ 𝑡) ∘ 𝑞)) = (((𝑞𝑡) + 𝑇) (𝑞𝑡)))
8832, 58, 873eqtr3d 2786 . . . . . 6 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → 𝑄 = (((𝑞𝑡) + 𝑇) (𝑞𝑡)))
8923, 27, 88rspcedvd 3555 . . . . 5 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ∃𝑝𝐵 𝑄 = ((𝑝 + 𝑇) 𝑝))
9089anasss 466 . . . 4 ((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ (𝑡:(0..^𝑁)–1-1-onto𝐷 ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁))))) → ∃𝑝𝐵 𝑄 = ((𝑝 + 𝑇) 𝑝))
9114, 90exlimddv 1939 . . 3 (((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ∃𝑝𝐵 𝑄 = ((𝑝 + 𝑇) 𝑝))
9291anasss 466 . 2 ((𝜑 ∧ (𝑞:(0..^𝑁)–1-1-onto𝐷 ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁))))) → ∃𝑝𝐵 𝑄 = ((𝑝 + 𝑇) 𝑝))
9311, 92exlimddv 1939 1 (𝜑 → ∃𝑝𝐵 𝑄 = ((𝑝 + 𝑇) 𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1783  wcel 2108  wrex 3064  cun 3881  wss 3883  {csn 4558   I cid 5479  ccnv 5579  cres 5582  cima 5583  ccom 5584  Rel wrel 5585  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  Fincfn 8691  0cc0 10802  1c1 10803  ...cfz 13168  ..^cfzo 13311  chash 13972   cyclShift ccsh 14429  Basecbs 16840  +gcplusg 16888  Grpcgrp 18492  -gcsg 18494  SymGrpcsymg 18889  toCycctocyc 31275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-hash 13973  df-word 14146  df-concat 14202  df-substr 14282  df-pfx 14312  df-csh 14430  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-tset 16907  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-efmnd 18423  df-grp 18495  df-minusg 18496  df-sbg 18497  df-symg 18890  df-tocyc 31276
This theorem is referenced by:  cyc3conja  31326
  Copyright terms: Public domain W3C validator