Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem3 Structured version   Visualization version   GIF version

Theorem poimirlem3 35780
Description: Lemma for poimir 35810 to add an interior point to an admissible face on the back face of the cube. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimirlem4.1 (𝜑𝐾 ∈ ℕ)
poimirlem4.2 (𝜑𝑀 ∈ ℕ0)
poimirlem4.3 (𝜑𝑀 < 𝑁)
poimirlem3.4 (𝜑𝑇:(1...𝑀)⟶(0..^𝐾))
poimirlem3.5 (𝜑𝑈:(1...𝑀)–1-1-onto→(1...𝑀))
Assertion
Ref Expression
poimirlem3 (𝜑 → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ((𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝𝐵 → (⟨(𝑇 ∪ {⟨(𝑀 + 1), 0⟩}), (𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩})⟩ ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∧ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = (((𝑇 ∪ {⟨(𝑀 + 1), 0⟩}) ∘f + ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝𝐵 ∧ ((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘(𝑀 + 1)) = 0 ∧ ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩})‘(𝑀 + 1)) = (𝑀 + 1)))))
Distinct variable groups:   𝑓,𝑖,𝑗,𝑝   𝜑,𝑗   𝑗,𝑀   𝑗,𝑁   𝑇,𝑗   𝑈,𝑗   𝜑,𝑖,𝑝   𝐵,𝑓,𝑖,𝑗   𝑓,𝐾,𝑖,𝑗,𝑝   𝑓,𝑀,𝑖,𝑝   𝑓,𝑁,𝑖,𝑝   𝑇,𝑓,𝑖,𝑝   𝑈,𝑓,𝑖,𝑝
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑝)

Proof of Theorem poimirlem3
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 poimirlem3.4 . . . . . . . . . . . . . . 15 (𝜑𝑇:(1...𝑀)⟶(0..^𝐾))
21ffnd 6601 . . . . . . . . . . . . . 14 (𝜑𝑇 Fn (1...𝑀))
32adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑇 Fn (1...𝑀))
4 1ex 10971 . . . . . . . . . . . . . . . . 17 1 ∈ V
5 fnconstg 6662 . . . . . . . . . . . . . . . . 17 (1 ∈ V → ((𝑈 “ (1...𝑗)) × {1}) Fn (𝑈 “ (1...𝑗)))
64, 5ax-mp 5 . . . . . . . . . . . . . . . 16 ((𝑈 “ (1...𝑗)) × {1}) Fn (𝑈 “ (1...𝑗))
7 c0ex 10969 . . . . . . . . . . . . . . . . 17 0 ∈ V
8 fnconstg 6662 . . . . . . . . . . . . . . . . 17 (0 ∈ V → ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) Fn (𝑈 “ ((𝑗 + 1)...𝑀)))
97, 8ax-mp 5 . . . . . . . . . . . . . . . 16 ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) Fn (𝑈 “ ((𝑗 + 1)...𝑀))
106, 9pm3.2i 471 . . . . . . . . . . . . . . 15 (((𝑈 “ (1...𝑗)) × {1}) Fn (𝑈 “ (1...𝑗)) ∧ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) Fn (𝑈 “ ((𝑗 + 1)...𝑀)))
11 poimirlem3.5 . . . . . . . . . . . . . . . . 17 (𝜑𝑈:(1...𝑀)–1-1-onto→(1...𝑀))
12 dff1o3 6722 . . . . . . . . . . . . . . . . . 18 (𝑈:(1...𝑀)–1-1-onto→(1...𝑀) ↔ (𝑈:(1...𝑀)–onto→(1...𝑀) ∧ Fun 𝑈))
1312simprbi 497 . . . . . . . . . . . . . . . . 17 (𝑈:(1...𝑀)–1-1-onto→(1...𝑀) → Fun 𝑈)
14 imain 6519 . . . . . . . . . . . . . . . . 17 (Fun 𝑈 → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑀))) = ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑀))))
1511, 13, 143syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑀))) = ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑀))))
16 elfznn0 13349 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℕ0)
1716nn0red 12294 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ)
1817ltp1d 11905 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑀) → 𝑗 < (𝑗 + 1))
19 fzdisj 13283 . . . . . . . . . . . . . . . . . . 19 (𝑗 < (𝑗 + 1) → ((1...𝑗) ∩ ((𝑗 + 1)...𝑀)) = ∅)
2018, 19syl 17 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → ((1...𝑗) ∩ ((𝑗 + 1)...𝑀)) = ∅)
2120imaeq2d 5969 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑀) → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑀))) = (𝑈 “ ∅))
22 ima0 5985 . . . . . . . . . . . . . . . . 17 (𝑈 “ ∅) = ∅
2321, 22eqtrdi 2794 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...𝑀) → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑀))) = ∅)
2415, 23sylan9req 2799 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑀))) = ∅)
25 fnun 6545 . . . . . . . . . . . . . . 15 (((((𝑈 “ (1...𝑗)) × {1}) Fn (𝑈 “ (1...𝑗)) ∧ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) Fn (𝑈 “ ((𝑗 + 1)...𝑀))) ∧ ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑀))) = ∅) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})) Fn ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑀))))
2610, 24, 25sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...𝑀)) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})) Fn ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑀))))
27 imaundi 6053 . . . . . . . . . . . . . . . 16 (𝑈 “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑀))) = ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑀)))
28 nn0p1nn 12272 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ)
29 nnuz 12621 . . . . . . . . . . . . . . . . . . . . . 22 ℕ = (ℤ‘1)
3028, 29eleqtrdi 2849 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ (ℤ‘1))
3116, 30syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...𝑀) → (𝑗 + 1) ∈ (ℤ‘1))
32 elfzuz3 13253 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ (ℤ𝑗))
33 fzsplit2 13281 . . . . . . . . . . . . . . . . . . . 20 (((𝑗 + 1) ∈ (ℤ‘1) ∧ 𝑀 ∈ (ℤ𝑗)) → (1...𝑀) = ((1...𝑗) ∪ ((𝑗 + 1)...𝑀)))
3431, 32, 33syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑀) → (1...𝑀) = ((1...𝑗) ∪ ((𝑗 + 1)...𝑀)))
3534eqcomd 2744 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → ((1...𝑗) ∪ ((𝑗 + 1)...𝑀)) = (1...𝑀))
3635imaeq2d 5969 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑀) → (𝑈 “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑀))) = (𝑈 “ (1...𝑀)))
37 f1ofo 6723 . . . . . . . . . . . . . . . . . 18 (𝑈:(1...𝑀)–1-1-onto→(1...𝑀) → 𝑈:(1...𝑀)–onto→(1...𝑀))
38 foima 6693 . . . . . . . . . . . . . . . . . 18 (𝑈:(1...𝑀)–onto→(1...𝑀) → (𝑈 “ (1...𝑀)) = (1...𝑀))
3911, 37, 383syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑈 “ (1...𝑀)) = (1...𝑀))
4036, 39sylan9eqr 2800 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑈 “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑀))) = (1...𝑀))
4127, 40eqtr3id 2792 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑀))) = (1...𝑀))
4241fneq2d 6527 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...𝑀)) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})) Fn ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑀))) ↔ (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})) Fn (1...𝑀)))
4326, 42mpbid 231 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑀)) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})) Fn (1...𝑀))
44 ovexd 7310 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑀)) → (1...𝑀) ∈ V)
45 inidm 4152 . . . . . . . . . . . . 13 ((1...𝑀) ∩ (1...𝑀)) = (1...𝑀)
46 eqidd 2739 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑛 ∈ (1...𝑀)) → (𝑇𝑛) = (𝑇𝑛))
47 eqidd 2739 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑛 ∈ (1...𝑀)) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛) = ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛))
483, 43, 44, 44, 45, 46, 47offval 7542 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) = (𝑛 ∈ (1...𝑀) ↦ ((𝑇𝑛) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛))))
49 poimirlem4.2 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℕ0)
50 nn0p1nn 12272 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ)
5149, 50syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀 + 1) ∈ ℕ)
5251nnzd 12425 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 + 1) ∈ ℤ)
53 uzid 12597 . . . . . . . . . . . . . . . . . 18 ((𝑀 + 1) ∈ ℤ → (𝑀 + 1) ∈ (ℤ‘(𝑀 + 1)))
54 peano2uz 12641 . . . . . . . . . . . . . . . . . 18 ((𝑀 + 1) ∈ (ℤ‘(𝑀 + 1)) → ((𝑀 + 1) + 1) ∈ (ℤ‘(𝑀 + 1)))
5552, 53, 543syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑀 + 1) + 1) ∈ (ℤ‘(𝑀 + 1)))
56 poimirlem4.3 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 < 𝑁)
5749nn0zd 12424 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℤ)
58 poimir.0 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℕ)
5958nnzd 12425 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℤ)
60 zltp1le 12370 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
61 peano2z 12361 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ)
62 eluz 12596 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ‘(𝑀 + 1)) ↔ (𝑀 + 1) ≤ 𝑁))
6361, 62sylan 580 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ‘(𝑀 + 1)) ↔ (𝑀 + 1) ≤ 𝑁))
6460, 63bitr4d 281 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑁 ∈ (ℤ‘(𝑀 + 1))))
6557, 59, 64syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 < 𝑁𝑁 ∈ (ℤ‘(𝑀 + 1))))
6656, 65mpbid 231 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))
67 fzsplit2 13281 . . . . . . . . . . . . . . . . 17 ((((𝑀 + 1) + 1) ∈ (ℤ‘(𝑀 + 1)) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑀 + 1)...𝑁) = (((𝑀 + 1)...(𝑀 + 1)) ∪ (((𝑀 + 1) + 1)...𝑁)))
6855, 66, 67syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑀 + 1)...𝑁) = (((𝑀 + 1)...(𝑀 + 1)) ∪ (((𝑀 + 1) + 1)...𝑁)))
69 fzsn 13298 . . . . . . . . . . . . . . . . . 18 ((𝑀 + 1) ∈ ℤ → ((𝑀 + 1)...(𝑀 + 1)) = {(𝑀 + 1)})
7052, 69syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑀 + 1)...(𝑀 + 1)) = {(𝑀 + 1)})
7170uneq1d 4096 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑀 + 1)...(𝑀 + 1)) ∪ (((𝑀 + 1) + 1)...𝑁)) = ({(𝑀 + 1)} ∪ (((𝑀 + 1) + 1)...𝑁)))
7268, 71eqtrd 2778 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑀 + 1)...𝑁) = ({(𝑀 + 1)} ∪ (((𝑀 + 1) + 1)...𝑁)))
7372xpeq1d 5618 . . . . . . . . . . . . . 14 (𝜑 → (((𝑀 + 1)...𝑁) × {0}) = (({(𝑀 + 1)} ∪ (((𝑀 + 1) + 1)...𝑁)) × {0}))
74 xpundir 5656 . . . . . . . . . . . . . . 15 (({(𝑀 + 1)} ∪ (((𝑀 + 1) + 1)...𝑁)) × {0}) = (({(𝑀 + 1)} × {0}) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0}))
75 ovex 7308 . . . . . . . . . . . . . . . . 17 (𝑀 + 1) ∈ V
7675, 7xpsn 7013 . . . . . . . . . . . . . . . 16 ({(𝑀 + 1)} × {0}) = {⟨(𝑀 + 1), 0⟩}
7776uneq1i 4093 . . . . . . . . . . . . . . 15 (({(𝑀 + 1)} × {0}) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) = ({⟨(𝑀 + 1), 0⟩} ∪ ((((𝑀 + 1) + 1)...𝑁) × {0}))
7874, 77eqtri 2766 . . . . . . . . . . . . . 14 (({(𝑀 + 1)} ∪ (((𝑀 + 1) + 1)...𝑁)) × {0}) = ({⟨(𝑀 + 1), 0⟩} ∪ ((((𝑀 + 1) + 1)...𝑁) × {0}))
7973, 78eqtrdi 2794 . . . . . . . . . . . . 13 (𝜑 → (((𝑀 + 1)...𝑁) × {0}) = ({⟨(𝑀 + 1), 0⟩} ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})))
8079adantr 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...𝑀)) → (((𝑀 + 1)...𝑁) × {0}) = ({⟨(𝑀 + 1), 0⟩} ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})))
8148, 80uneq12d 4098 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) = ((𝑛 ∈ (1...𝑀) ↦ ((𝑇𝑛) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛))) ∪ ({⟨(𝑀 + 1), 0⟩} ∪ ((((𝑀 + 1) + 1)...𝑁) × {0}))))
82 unass 4100 . . . . . . . . . . 11 (((𝑛 ∈ (1...𝑀) ↦ ((𝑇𝑛) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛))) ∪ {⟨(𝑀 + 1), 0⟩}) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) = ((𝑛 ∈ (1...𝑀) ↦ ((𝑇𝑛) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛))) ∪ ({⟨(𝑀 + 1), 0⟩} ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})))
8381, 82eqtr4di 2796 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) = (((𝑛 ∈ (1...𝑀) ↦ ((𝑇𝑛) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛))) ∪ {⟨(𝑀 + 1), 0⟩}) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})))
8449nn0red 12294 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑀 ∈ ℝ)
8584ltp1d 11905 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 < (𝑀 + 1))
8651nnred 11988 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑀 + 1) ∈ ℝ)
8784, 86ltnled 11122 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑀 < (𝑀 + 1) ↔ ¬ (𝑀 + 1) ≤ 𝑀))
8885, 87mpbid 231 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ¬ (𝑀 + 1) ≤ 𝑀)
89 elfzle2 13260 . . . . . . . . . . . . . . . . . . 19 ((𝑀 + 1) ∈ (1...𝑀) → (𝑀 + 1) ≤ 𝑀)
9088, 89nsyl 140 . . . . . . . . . . . . . . . . . 18 (𝜑 → ¬ (𝑀 + 1) ∈ (1...𝑀))
91 disjsn 4647 . . . . . . . . . . . . . . . . . 18 (((1...𝑀) ∩ {(𝑀 + 1)}) = ∅ ↔ ¬ (𝑀 + 1) ∈ (1...𝑀))
9290, 91sylibr 233 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅)
93 eqid 2738 . . . . . . . . . . . . . . . . . . 19 {⟨(𝑀 + 1), 0⟩} = {⟨(𝑀 + 1), 0⟩}
9475, 7fsn 7007 . . . . . . . . . . . . . . . . . . 19 ({⟨(𝑀 + 1), 0⟩}:{(𝑀 + 1)}⟶{0} ↔ {⟨(𝑀 + 1), 0⟩} = {⟨(𝑀 + 1), 0⟩})
9593, 94mpbir 230 . . . . . . . . . . . . . . . . . 18 {⟨(𝑀 + 1), 0⟩}:{(𝑀 + 1)}⟶{0}
96 fun 6636 . . . . . . . . . . . . . . . . . 18 (((𝑇:(1...𝑀)⟶(0..^𝐾) ∧ {⟨(𝑀 + 1), 0⟩}:{(𝑀 + 1)}⟶{0}) ∧ ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅) → (𝑇 ∪ {⟨(𝑀 + 1), 0⟩}):((1...𝑀) ∪ {(𝑀 + 1)})⟶((0..^𝐾) ∪ {0}))
9795, 96mpanl2 698 . . . . . . . . . . . . . . . . 17 ((𝑇:(1...𝑀)⟶(0..^𝐾) ∧ ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅) → (𝑇 ∪ {⟨(𝑀 + 1), 0⟩}):((1...𝑀) ∪ {(𝑀 + 1)})⟶((0..^𝐾) ∪ {0}))
981, 92, 97syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑇 ∪ {⟨(𝑀 + 1), 0⟩}):((1...𝑀) ∪ {(𝑀 + 1)})⟶((0..^𝐾) ∪ {0}))
99 1z 12350 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℤ
100 nn0uz 12620 . . . . . . . . . . . . . . . . . . . . 21 0 = (ℤ‘0)
101 1m1e0 12045 . . . . . . . . . . . . . . . . . . . . . 22 (1 − 1) = 0
102101fveq2i 6777 . . . . . . . . . . . . . . . . . . . . 21 (ℤ‘(1 − 1)) = (ℤ‘0)
103100, 102eqtr4i 2769 . . . . . . . . . . . . . . . . . . . 20 0 = (ℤ‘(1 − 1))
10449, 103eleqtrdi 2849 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ (ℤ‘(1 − 1)))
105 fzsuc2 13314 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℤ ∧ 𝑀 ∈ (ℤ‘(1 − 1))) → (1...(𝑀 + 1)) = ((1...𝑀) ∪ {(𝑀 + 1)}))
10699, 104, 105sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1...(𝑀 + 1)) = ((1...𝑀) ∪ {(𝑀 + 1)}))
107106eqcomd 2744 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1...𝑀) ∪ {(𝑀 + 1)}) = (1...(𝑀 + 1)))
108 poimirlem4.1 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐾 ∈ ℕ)
109 lbfzo0 13427 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ (0..^𝐾) ↔ 𝐾 ∈ ℕ)
110108, 109sylibr 233 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ∈ (0..^𝐾))
111110snssd 4742 . . . . . . . . . . . . . . . . . 18 (𝜑 → {0} ⊆ (0..^𝐾))
112 ssequn2 4117 . . . . . . . . . . . . . . . . . 18 ({0} ⊆ (0..^𝐾) ↔ ((0..^𝐾) ∪ {0}) = (0..^𝐾))
113111, 112sylib 217 . . . . . . . . . . . . . . . . 17 (𝜑 → ((0..^𝐾) ∪ {0}) = (0..^𝐾))
114107, 113feq23d 6595 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑇 ∪ {⟨(𝑀 + 1), 0⟩}):((1...𝑀) ∪ {(𝑀 + 1)})⟶((0..^𝐾) ∪ {0}) ↔ (𝑇 ∪ {⟨(𝑀 + 1), 0⟩}):(1...(𝑀 + 1))⟶(0..^𝐾)))
11598, 114mpbid 231 . . . . . . . . . . . . . . 15 (𝜑 → (𝑇 ∪ {⟨(𝑀 + 1), 0⟩}):(1...(𝑀 + 1))⟶(0..^𝐾))
116115ffnd 6601 . . . . . . . . . . . . . 14 (𝜑 → (𝑇 ∪ {⟨(𝑀 + 1), 0⟩}) Fn (1...(𝑀 + 1)))
117116adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑇 ∪ {⟨(𝑀 + 1), 0⟩}) Fn (1...(𝑀 + 1)))
118 fnconstg 6662 . . . . . . . . . . . . . . . . 17 (1 ∈ V → (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) Fn ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)))
1194, 118ax-mp 5 . . . . . . . . . . . . . . . 16 (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) Fn ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗))
120 fnconstg 6662 . . . . . . . . . . . . . . . . 17 (0 ∈ V → (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) Fn ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))))
1217, 120ax-mp 5 . . . . . . . . . . . . . . . 16 (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) Fn ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1)))
122119, 121pm3.2i 471 . . . . . . . . . . . . . . 15 ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) Fn ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) ∧ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) Fn ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))))
12375, 75f1osn 6756 . . . . . . . . . . . . . . . . . . 19 {⟨(𝑀 + 1), (𝑀 + 1)⟩}:{(𝑀 + 1)}–1-1-onto→{(𝑀 + 1)}
124 f1oun 6735 . . . . . . . . . . . . . . . . . . 19 (((𝑈:(1...𝑀)–1-1-onto→(1...𝑀) ∧ {⟨(𝑀 + 1), (𝑀 + 1)⟩}:{(𝑀 + 1)}–1-1-onto→{(𝑀 + 1)}) ∧ (((1...𝑀) ∩ {(𝑀 + 1)}) = ∅ ∧ ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅)) → (𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}):((1...𝑀) ∪ {(𝑀 + 1)})–1-1-onto→((1...𝑀) ∪ {(𝑀 + 1)}))
125123, 124mpanl2 698 . . . . . . . . . . . . . . . . . 18 ((𝑈:(1...𝑀)–1-1-onto→(1...𝑀) ∧ (((1...𝑀) ∩ {(𝑀 + 1)}) = ∅ ∧ ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅)) → (𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}):((1...𝑀) ∪ {(𝑀 + 1)})–1-1-onto→((1...𝑀) ∪ {(𝑀 + 1)}))
12611, 92, 92, 125syl12anc 834 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}):((1...𝑀) ∪ {(𝑀 + 1)})–1-1-onto→((1...𝑀) ∪ {(𝑀 + 1)}))
127 dff1o3 6722 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}):((1...𝑀) ∪ {(𝑀 + 1)})–1-1-onto→((1...𝑀) ∪ {(𝑀 + 1)}) ↔ ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}):((1...𝑀) ∪ {(𝑀 + 1)})–onto→((1...𝑀) ∪ {(𝑀 + 1)}) ∧ Fun (𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩})))
128127simprbi 497 . . . . . . . . . . . . . . . . 17 ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}):((1...𝑀) ∪ {(𝑀 + 1)})–1-1-onto→((1...𝑀) ∪ {(𝑀 + 1)}) → Fun (𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}))
129 imain 6519 . . . . . . . . . . . . . . . . 17 (Fun (𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) → ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((1...𝑗) ∩ ((𝑗 + 1)...(𝑀 + 1)))) = (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) ∩ ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1)))))
130126, 128, 1293syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((1...𝑗) ∩ ((𝑗 + 1)...(𝑀 + 1)))) = (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) ∩ ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1)))))
131 fzdisj 13283 . . . . . . . . . . . . . . . . . . 19 (𝑗 < (𝑗 + 1) → ((1...𝑗) ∩ ((𝑗 + 1)...(𝑀 + 1))) = ∅)
13218, 131syl 17 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → ((1...𝑗) ∩ ((𝑗 + 1)...(𝑀 + 1))) = ∅)
133132imaeq2d 5969 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑀) → ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((1...𝑗) ∩ ((𝑗 + 1)...(𝑀 + 1)))) = ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ∅))
134 ima0 5985 . . . . . . . . . . . . . . . . 17 ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ∅) = ∅
135133, 134eqtrdi 2794 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...𝑀) → ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((1...𝑗) ∩ ((𝑗 + 1)...(𝑀 + 1)))) = ∅)
136130, 135sylan9req 2799 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0...𝑀)) → (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) ∩ ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1)))) = ∅)
137 fnun 6545 . . . . . . . . . . . . . . 15 ((((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) Fn ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) ∧ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) Fn ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1)))) ∧ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) ∩ ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1)))) = ∅) → ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) Fn (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) ∪ ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1)))))
138122, 136, 137sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...𝑀)) → ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) Fn (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) ∪ ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1)))))
139 f1ofo 6723 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}):((1...𝑀) ∪ {(𝑀 + 1)})–1-1-onto→((1...𝑀) ∪ {(𝑀 + 1)}) → (𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}):((1...𝑀) ∪ {(𝑀 + 1)})–onto→((1...𝑀) ∪ {(𝑀 + 1)}))
140 foima 6693 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}):((1...𝑀) ∪ {(𝑀 + 1)})–onto→((1...𝑀) ∪ {(𝑀 + 1)}) → ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((1...𝑀) ∪ {(𝑀 + 1)})) = ((1...𝑀) ∪ {(𝑀 + 1)}))
141126, 139, 1403syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((1...𝑀) ∪ {(𝑀 + 1)})) = ((1...𝑀) ∪ {(𝑀 + 1)}))
142106imaeq2d 5969 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...(𝑀 + 1))) = ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((1...𝑀) ∪ {(𝑀 + 1)})))
143141, 142, 1063eqtr4d 2788 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...(𝑀 + 1))) = (1...(𝑀 + 1)))
144 peano2uz 12641 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ (ℤ𝑗) → (𝑀 + 1) ∈ (ℤ𝑗))
14532, 144syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑀) → (𝑀 + 1) ∈ (ℤ𝑗))
146 fzsplit2 13281 . . . . . . . . . . . . . . . . . . 19 (((𝑗 + 1) ∈ (ℤ‘1) ∧ (𝑀 + 1) ∈ (ℤ𝑗)) → (1...(𝑀 + 1)) = ((1...𝑗) ∪ ((𝑗 + 1)...(𝑀 + 1))))
14731, 145, 146syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → (1...(𝑀 + 1)) = ((1...𝑗) ∪ ((𝑗 + 1)...(𝑀 + 1))))
148147imaeq2d 5969 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑀) → ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...(𝑀 + 1))) = ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((1...𝑗) ∪ ((𝑗 + 1)...(𝑀 + 1)))))
149143, 148sylan9req 2799 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (0...𝑀)) → (1...(𝑀 + 1)) = ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((1...𝑗) ∪ ((𝑗 + 1)...(𝑀 + 1)))))
150 imaundi 6053 . . . . . . . . . . . . . . . 16 ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((1...𝑗) ∪ ((𝑗 + 1)...(𝑀 + 1)))) = (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) ∪ ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))))
151149, 150eqtrdi 2794 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0...𝑀)) → (1...(𝑀 + 1)) = (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) ∪ ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1)))))
152151fneq2d 6527 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...𝑀)) → (((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) Fn (1...(𝑀 + 1)) ↔ ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) Fn (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) ∪ ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))))))
153138, 152mpbird 256 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑀)) → ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) Fn (1...(𝑀 + 1)))
154 ovexd 7310 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑀)) → (1...(𝑀 + 1)) ∈ V)
155 inidm 4152 . . . . . . . . . . . . 13 ((1...(𝑀 + 1)) ∩ (1...(𝑀 + 1))) = (1...(𝑀 + 1))
156 eqidd 2739 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑛 ∈ (1...(𝑀 + 1))) → ((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘𝑛) = ((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘𝑛))
157 eqidd 2739 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑛 ∈ (1...(𝑀 + 1))) → (((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛) = (((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛))
158117, 153, 154, 154, 155, 156, 157offval 7542 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑇 ∪ {⟨(𝑀 + 1), 0⟩}) ∘f + ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) = (𝑛 ∈ (1...(𝑀 + 1)) ↦ (((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘𝑛) + (((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛))))
159 imadmrn 5979 . . . . . . . . . . . . . . . . . . 19 (({(𝑀 + 1)} × {(𝑀 + 1)}) “ dom ({(𝑀 + 1)} × {(𝑀 + 1)})) = ran ({(𝑀 + 1)} × {(𝑀 + 1)})
16075, 75xpsn 7013 . . . . . . . . . . . . . . . . . . . . 21 ({(𝑀 + 1)} × {(𝑀 + 1)}) = {⟨(𝑀 + 1), (𝑀 + 1)⟩}
161160imaeq1i 5966 . . . . . . . . . . . . . . . . . . . 20 (({(𝑀 + 1)} × {(𝑀 + 1)}) “ dom ({(𝑀 + 1)} × {(𝑀 + 1)})) = ({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ dom ({(𝑀 + 1)} × {(𝑀 + 1)}))
162 dmxpid 5839 . . . . . . . . . . . . . . . . . . . . 21 dom ({(𝑀 + 1)} × {(𝑀 + 1)}) = {(𝑀 + 1)}
163162imaeq2i 5967 . . . . . . . . . . . . . . . . . . . 20 ({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ dom ({(𝑀 + 1)} × {(𝑀 + 1)})) = ({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ {(𝑀 + 1)})
164161, 163eqtri 2766 . . . . . . . . . . . . . . . . . . 19 (({(𝑀 + 1)} × {(𝑀 + 1)}) “ dom ({(𝑀 + 1)} × {(𝑀 + 1)})) = ({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ {(𝑀 + 1)})
165 rnxpid 6076 . . . . . . . . . . . . . . . . . . 19 ran ({(𝑀 + 1)} × {(𝑀 + 1)}) = {(𝑀 + 1)}
166159, 164, 1653eqtr3ri 2775 . . . . . . . . . . . . . . . . . 18 {(𝑀 + 1)} = ({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ {(𝑀 + 1)})
167 eluzp1p1 12610 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ (ℤ𝑗) → (𝑀 + 1) ∈ (ℤ‘(𝑗 + 1)))
168 eluzfz2 13264 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 + 1) ∈ (ℤ‘(𝑗 + 1)) → (𝑀 + 1) ∈ ((𝑗 + 1)...(𝑀 + 1)))
16932, 167, 1683syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...𝑀) → (𝑀 + 1) ∈ ((𝑗 + 1)...(𝑀 + 1)))
170169snssd 4742 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑀) → {(𝑀 + 1)} ⊆ ((𝑗 + 1)...(𝑀 + 1)))
171 imass2 6010 . . . . . . . . . . . . . . . . . . 19 ({(𝑀 + 1)} ⊆ ((𝑗 + 1)...(𝑀 + 1)) → ({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ {(𝑀 + 1)}) ⊆ ({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))))
172170, 171syl 17 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → ({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ {(𝑀 + 1)}) ⊆ ({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))))
173166, 172eqsstrid 3969 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑀) → {(𝑀 + 1)} ⊆ ({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))))
17475snid 4597 . . . . . . . . . . . . . . . . 17 (𝑀 + 1) ∈ {(𝑀 + 1)}
175 ssel 3914 . . . . . . . . . . . . . . . . 17 ({(𝑀 + 1)} ⊆ ({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))) → ((𝑀 + 1) ∈ {(𝑀 + 1)} → (𝑀 + 1) ∈ ({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1)))))
176173, 174, 175mpisyl 21 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...𝑀) → (𝑀 + 1) ∈ ({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))))
177 elun2 4111 . . . . . . . . . . . . . . . 16 ((𝑀 + 1) ∈ ({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))) → (𝑀 + 1) ∈ ((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) ∪ ({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1)))))
178176, 177syl 17 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0...𝑀) → (𝑀 + 1) ∈ ((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) ∪ ({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1)))))
179 imaundir 6054 . . . . . . . . . . . . . . 15 ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) = ((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) ∪ ({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))))
180178, 179eleqtrrdi 2850 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑀) → (𝑀 + 1) ∈ ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))))
181180adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑀 + 1) ∈ ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))))
1827a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑀)) → 0 ∈ V)
183107adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑀)) → ((1...𝑀) ∪ {(𝑀 + 1)}) = (1...(𝑀 + 1)))
184 fveq2 6774 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑀 + 1) → ((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘𝑛) = ((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘(𝑀 + 1)))
18575, 7fnsn 6492 . . . . . . . . . . . . . . . . . . . . 21 {⟨(𝑀 + 1), 0⟩} Fn {(𝑀 + 1)}
186 fvun2 6860 . . . . . . . . . . . . . . . . . . . . 21 ((𝑇 Fn (1...𝑀) ∧ {⟨(𝑀 + 1), 0⟩} Fn {(𝑀 + 1)} ∧ (((1...𝑀) ∩ {(𝑀 + 1)}) = ∅ ∧ (𝑀 + 1) ∈ {(𝑀 + 1)})) → ((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘(𝑀 + 1)) = ({⟨(𝑀 + 1), 0⟩}‘(𝑀 + 1)))
187185, 186mp3an2 1448 . . . . . . . . . . . . . . . . . . . 20 ((𝑇 Fn (1...𝑀) ∧ (((1...𝑀) ∩ {(𝑀 + 1)}) = ∅ ∧ (𝑀 + 1) ∈ {(𝑀 + 1)})) → ((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘(𝑀 + 1)) = ({⟨(𝑀 + 1), 0⟩}‘(𝑀 + 1)))
188174, 187mpanr2 701 . . . . . . . . . . . . . . . . . . 19 ((𝑇 Fn (1...𝑀) ∧ ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅) → ((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘(𝑀 + 1)) = ({⟨(𝑀 + 1), 0⟩}‘(𝑀 + 1)))
1892, 92, 188syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘(𝑀 + 1)) = ({⟨(𝑀 + 1), 0⟩}‘(𝑀 + 1)))
19075, 7fvsn 7053 . . . . . . . . . . . . . . . . . 18 ({⟨(𝑀 + 1), 0⟩}‘(𝑀 + 1)) = 0
191189, 190eqtrdi 2794 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘(𝑀 + 1)) = 0)
192184, 191sylan9eqr 2800 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 = (𝑀 + 1)) → ((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘𝑛) = 0)
193192adantlr 712 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑛 = (𝑀 + 1)) → ((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘𝑛) = 0)
194 fveq2 6774 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑀 + 1) → (((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛) = (((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘(𝑀 + 1)))
195 fvun2 6860 . . . . . . . . . . . . . . . . . . 19 (((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) Fn ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) ∧ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) Fn ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) ∧ ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) ∩ ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1)))) = ∅ ∧ (𝑀 + 1) ∈ ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))))) → (((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘(𝑀 + 1)) = ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})‘(𝑀 + 1)))
196119, 121, 195mp3an12 1450 . . . . . . . . . . . . . . . . . 18 (((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) ∩ ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1)))) = ∅ ∧ (𝑀 + 1) ∈ ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1)))) → (((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘(𝑀 + 1)) = ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})‘(𝑀 + 1)))
197136, 181, 196syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0...𝑀)) → (((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘(𝑀 + 1)) = ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})‘(𝑀 + 1)))
1987fvconst2 7079 . . . . . . . . . . . . . . . . . . 19 ((𝑀 + 1) ∈ ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) → ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})‘(𝑀 + 1)) = 0)
199180, 198syl 17 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})‘(𝑀 + 1)) = 0)
200199adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0...𝑀)) → ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})‘(𝑀 + 1)) = 0)
201197, 200eqtrd 2778 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (0...𝑀)) → (((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘(𝑀 + 1)) = 0)
202194, 201sylan9eqr 2800 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑛 = (𝑀 + 1)) → (((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛) = 0)
203193, 202oveq12d 7293 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑛 = (𝑀 + 1)) → (((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘𝑛) + (((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛)) = (0 + 0))
204 00id 11150 . . . . . . . . . . . . . 14 (0 + 0) = 0
205203, 204eqtrdi 2794 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑛 = (𝑀 + 1)) → (((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘𝑛) + (((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛)) = 0)
206181, 182, 183, 205fmptapd 7043 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑛 ∈ (1...𝑀) ↦ (((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘𝑛) + (((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛))) ∪ {⟨(𝑀 + 1), 0⟩}) = (𝑛 ∈ (1...(𝑀 + 1)) ↦ (((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘𝑛) + (((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛))))
2072, 92jca 512 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑇 Fn (1...𝑀) ∧ ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅))
208 fvun1 6859 . . . . . . . . . . . . . . . . . . 19 ((𝑇 Fn (1...𝑀) ∧ {⟨(𝑀 + 1), 0⟩} Fn {(𝑀 + 1)} ∧ (((1...𝑀) ∩ {(𝑀 + 1)}) = ∅ ∧ 𝑛 ∈ (1...𝑀))) → ((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘𝑛) = (𝑇𝑛))
209185, 208mp3an2 1448 . . . . . . . . . . . . . . . . . 18 ((𝑇 Fn (1...𝑀) ∧ (((1...𝑀) ∩ {(𝑀 + 1)}) = ∅ ∧ 𝑛 ∈ (1...𝑀))) → ((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘𝑛) = (𝑇𝑛))
210209anassrs 468 . . . . . . . . . . . . . . . . 17 (((𝑇 Fn (1...𝑀) ∧ ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅) ∧ 𝑛 ∈ (1...𝑀)) → ((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘𝑛) = (𝑇𝑛))
211207, 210sylan 580 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...𝑀)) → ((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘𝑛) = (𝑇𝑛))
212211adantlr 712 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑛 ∈ (1...𝑀)) → ((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘𝑛) = (𝑇𝑛))
213 fvres 6793 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (1...𝑀) → ((((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) ↾ (1...𝑀))‘𝑛) = (((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛))
214213eqcomd 2744 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (1...𝑀) → (((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛) = ((((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) ↾ (1...𝑀))‘𝑛))
215 resundir 5906 . . . . . . . . . . . . . . . . . 18 (((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) ↾ (1...𝑀)) = (((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ↾ (1...𝑀)) ∪ ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)))
216 relxp 5607 . . . . . . . . . . . . . . . . . . . . . . 23 Rel ((𝑈 “ (1...𝑗)) × {1})
217 dmxpss 6074 . . . . . . . . . . . . . . . . . . . . . . . . 25 dom ((𝑈 “ (1...𝑗)) × {1}) ⊆ (𝑈 “ (1...𝑗))
218 imassrn 5980 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑈 “ (1...𝑗)) ⊆ ran 𝑈
219217, 218sstri 3930 . . . . . . . . . . . . . . . . . . . . . . . 24 dom ((𝑈 “ (1...𝑗)) × {1}) ⊆ ran 𝑈
220 f1of 6716 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑈:(1...𝑀)–1-1-onto→(1...𝑀) → 𝑈:(1...𝑀)⟶(1...𝑀))
221 frn 6607 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑈:(1...𝑀)⟶(1...𝑀) → ran 𝑈 ⊆ (1...𝑀))
22211, 220, 2213syl 18 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ran 𝑈 ⊆ (1...𝑀))
223219, 222sstrid 3932 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → dom ((𝑈 “ (1...𝑗)) × {1}) ⊆ (1...𝑀))
224 relssres 5932 . . . . . . . . . . . . . . . . . . . . . . 23 ((Rel ((𝑈 “ (1...𝑗)) × {1}) ∧ dom ((𝑈 “ (1...𝑗)) × {1}) ⊆ (1...𝑀)) → (((𝑈 “ (1...𝑗)) × {1}) ↾ (1...𝑀)) = ((𝑈 “ (1...𝑗)) × {1}))
225216, 223, 224sylancr 587 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝑈 “ (1...𝑗)) × {1}) ↾ (1...𝑀)) = ((𝑈 “ (1...𝑗)) × {1}))
226225adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0...𝑀)) → (((𝑈 “ (1...𝑗)) × {1}) ↾ (1...𝑀)) = ((𝑈 “ (1...𝑗)) × {1}))
227 imassrn 5980 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ (1...𝑗)) ⊆ ran {⟨(𝑀 + 1), (𝑀 + 1)⟩}
22875rnsnop 6127 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ran {⟨(𝑀 + 1), (𝑀 + 1)⟩} = {(𝑀 + 1)}
229227, 228sseqtri 3957 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ (1...𝑗)) ⊆ {(𝑀 + 1)}
230 ssrin 4167 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ (1...𝑗)) ⊆ {(𝑀 + 1)} → (({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ (1...𝑗)) ∩ (1...𝑀)) ⊆ ({(𝑀 + 1)} ∩ (1...𝑀)))
231229, 230ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25 (({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ (1...𝑗)) ∩ (1...𝑀)) ⊆ ({(𝑀 + 1)} ∩ (1...𝑀))
232 incom 4135 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ({(𝑀 + 1)} ∩ (1...𝑀)) = ((1...𝑀) ∩ {(𝑀 + 1)})
233232, 92eqtrid 2790 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ({(𝑀 + 1)} ∩ (1...𝑀)) = ∅)
234231, 233sseqtrid 3973 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ (1...𝑗)) ∩ (1...𝑀)) ⊆ ∅)
235 ss0 4332 . . . . . . . . . . . . . . . . . . . . . . . 24 ((({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ (1...𝑗)) ∩ (1...𝑀)) ⊆ ∅ → (({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ (1...𝑗)) ∩ (1...𝑀)) = ∅)
236234, 235syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ (1...𝑗)) ∩ (1...𝑀)) = ∅)
237 fnconstg 6662 . . . . . . . . . . . . . . . . . . . . . . . 24 (1 ∈ V → (({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ (1...𝑗)) × {1}) Fn ({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ (1...𝑗)))
238 fnresdisj 6552 . . . . . . . . . . . . . . . . . . . . . . . 24 ((({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ (1...𝑗)) × {1}) Fn ({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ (1...𝑗)) → ((({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ (1...𝑗)) ∩ (1...𝑀)) = ∅ ↔ ((({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ (1...𝑗)) × {1}) ↾ (1...𝑀)) = ∅))
2394, 237, 238mp2b 10 . . . . . . . . . . . . . . . . . . . . . . 23 ((({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ (1...𝑗)) ∩ (1...𝑀)) = ∅ ↔ ((({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ (1...𝑗)) × {1}) ↾ (1...𝑀)) = ∅)
240236, 239sylib 217 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ (1...𝑗)) × {1}) ↾ (1...𝑀)) = ∅)
241240adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0...𝑀)) → ((({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ (1...𝑗)) × {1}) ↾ (1...𝑀)) = ∅)
242226, 241uneq12d 4098 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0...𝑀)) → ((((𝑈 “ (1...𝑗)) × {1}) ↾ (1...𝑀)) ∪ ((({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ (1...𝑗)) × {1}) ↾ (1...𝑀))) = (((𝑈 “ (1...𝑗)) × {1}) ∪ ∅))
243 imaundir 6054 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) = ((𝑈 “ (1...𝑗)) ∪ ({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ (1...𝑗)))
244243xpeq1i 5615 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) = (((𝑈 “ (1...𝑗)) ∪ ({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ (1...𝑗))) × {1})
245 xpundir 5656 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑈 “ (1...𝑗)) ∪ ({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ (1...𝑗))) × {1}) = (((𝑈 “ (1...𝑗)) × {1}) ∪ (({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ (1...𝑗)) × {1}))
246244, 245eqtri 2766 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) = (((𝑈 “ (1...𝑗)) × {1}) ∪ (({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ (1...𝑗)) × {1}))
247246reseq1i 5887 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ↾ (1...𝑀)) = ((((𝑈 “ (1...𝑗)) × {1}) ∪ (({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ (1...𝑗)) × {1})) ↾ (1...𝑀))
248 resundir 5906 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑈 “ (1...𝑗)) × {1}) ∪ (({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ (1...𝑗)) × {1})) ↾ (1...𝑀)) = ((((𝑈 “ (1...𝑗)) × {1}) ↾ (1...𝑀)) ∪ ((({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ (1...𝑗)) × {1}) ↾ (1...𝑀)))
249247, 248eqtr2i 2767 . . . . . . . . . . . . . . . . . . . 20 ((((𝑈 “ (1...𝑗)) × {1}) ↾ (1...𝑀)) ∪ ((({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ (1...𝑗)) × {1}) ↾ (1...𝑀))) = ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ↾ (1...𝑀))
250 un0 4324 . . . . . . . . . . . . . . . . . . . 20 (((𝑈 “ (1...𝑗)) × {1}) ∪ ∅) = ((𝑈 “ (1...𝑗)) × {1})
251242, 249, 2503eqtr3g 2801 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0...𝑀)) → ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ↾ (1...𝑀)) = ((𝑈 “ (1...𝑗)) × {1}))
252 f1odm 6720 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑈:(1...𝑀)–1-1-onto→(1...𝑀) → dom 𝑈 = (1...𝑀))
25311, 252syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → dom 𝑈 = (1...𝑀))
254253ineq2d 4146 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (((𝑗 + 1)...(𝑀 + 1)) ∩ dom 𝑈) = (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑀)))
255254reseq2d 5891 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝑈 ↾ (((𝑗 + 1)...(𝑀 + 1)) ∩ dom 𝑈)) = (𝑈 ↾ (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑀))))
256 f1orel 6719 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑈:(1...𝑀)–1-1-onto→(1...𝑀) → Rel 𝑈)
257 resindm 5940 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (Rel 𝑈 → (𝑈 ↾ (((𝑗 + 1)...(𝑀 + 1)) ∩ dom 𝑈)) = (𝑈 ↾ ((𝑗 + 1)...(𝑀 + 1))))
25811, 256, 2573syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝑈 ↾ (((𝑗 + 1)...(𝑀 + 1)) ∩ dom 𝑈)) = (𝑈 ↾ ((𝑗 + 1)...(𝑀 + 1))))
259255, 258eqtr3d 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝑈 ↾ (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑀))) = (𝑈 ↾ ((𝑗 + 1)...(𝑀 + 1))))
26034ineq2d 4146 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 ∈ (0...𝑀) → (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑀)) = (((𝑗 + 1)...(𝑀 + 1)) ∩ ((1...𝑗) ∪ ((𝑗 + 1)...𝑀))))
261 fzssp1 13299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑗 + 1)...𝑀) ⊆ ((𝑗 + 1)...(𝑀 + 1))
262 sseqin2 4149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑗 + 1)...𝑀) ⊆ ((𝑗 + 1)...(𝑀 + 1)) ↔ (((𝑗 + 1)...(𝑀 + 1)) ∩ ((𝑗 + 1)...𝑀)) = ((𝑗 + 1)...𝑀))
263261, 262mpbi 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑗 + 1)...(𝑀 + 1)) ∩ ((𝑗 + 1)...𝑀)) = ((𝑗 + 1)...𝑀)
264263a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 ∈ (0...𝑀) → (((𝑗 + 1)...(𝑀 + 1)) ∩ ((𝑗 + 1)...𝑀)) = ((𝑗 + 1)...𝑀))
265 incom 4135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑗)) = ((1...𝑗) ∩ ((𝑗 + 1)...(𝑀 + 1)))
266265, 132eqtrid 2790 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 ∈ (0...𝑀) → (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑗)) = ∅)
267264, 266uneq12d 4098 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑗 ∈ (0...𝑀) → ((((𝑗 + 1)...(𝑀 + 1)) ∩ ((𝑗 + 1)...𝑀)) ∪ (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑗))) = (((𝑗 + 1)...𝑀) ∪ ∅))
268 uncom 4087 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑗 + 1)...(𝑀 + 1)) ∩ ((𝑗 + 1)...𝑀)) ∪ (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑗))) = ((((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑗)) ∪ (((𝑗 + 1)...(𝑀 + 1)) ∩ ((𝑗 + 1)...𝑀)))
269 indi 4207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑗 + 1)...(𝑀 + 1)) ∩ ((1...𝑗) ∪ ((𝑗 + 1)...𝑀))) = ((((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑗)) ∪ (((𝑗 + 1)...(𝑀 + 1)) ∩ ((𝑗 + 1)...𝑀)))
270268, 269eqtr4i 2769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑗 + 1)...(𝑀 + 1)) ∩ ((𝑗 + 1)...𝑀)) ∪ (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑗))) = (((𝑗 + 1)...(𝑀 + 1)) ∩ ((1...𝑗) ∪ ((𝑗 + 1)...𝑀)))
271 un0 4324 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑗 + 1)...𝑀) ∪ ∅) = ((𝑗 + 1)...𝑀)
272267, 270, 2713eqtr3g 2801 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 ∈ (0...𝑀) → (((𝑗 + 1)...(𝑀 + 1)) ∩ ((1...𝑗) ∪ ((𝑗 + 1)...𝑀))) = ((𝑗 + 1)...𝑀))
273260, 272eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 ∈ (0...𝑀) → (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑀)) = ((𝑗 + 1)...𝑀))
274273reseq2d 5891 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 ∈ (0...𝑀) → (𝑈 ↾ (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑀))) = (𝑈 ↾ ((𝑗 + 1)...𝑀)))
275259, 274sylan9req 2799 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑈 ↾ ((𝑗 + 1)...(𝑀 + 1))) = (𝑈 ↾ ((𝑗 + 1)...𝑀)))
276275rneqd 5847 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ (0...𝑀)) → ran (𝑈 ↾ ((𝑗 + 1)...(𝑀 + 1))) = ran (𝑈 ↾ ((𝑗 + 1)...𝑀)))
277 df-ima 5602 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) = ran (𝑈 ↾ ((𝑗 + 1)...(𝑀 + 1)))
278 df-ima 5602 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑈 “ ((𝑗 + 1)...𝑀)) = ran (𝑈 ↾ ((𝑗 + 1)...𝑀))
279276, 277, 2783eqtr4g 2803 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) = (𝑈 “ ((𝑗 + 1)...𝑀)))
280279xpeq1d 5618 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) = ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))
281280reseq1d 5890 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (0...𝑀)) → (((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) = (((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ↾ (1...𝑀)))
282 relxp 5607 . . . . . . . . . . . . . . . . . . . . . . . 24 Rel ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})
283 dmxpss 6074 . . . . . . . . . . . . . . . . . . . . . . . . . 26 dom ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ⊆ (𝑈 “ ((𝑗 + 1)...𝑀))
284 imassrn 5980 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑈 “ ((𝑗 + 1)...𝑀)) ⊆ ran 𝑈
285283, 284sstri 3930 . . . . . . . . . . . . . . . . . . . . . . . . 25 dom ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ⊆ ran 𝑈
286285, 222sstrid 3932 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → dom ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ⊆ (1...𝑀))
287 relssres 5932 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Rel ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ∧ dom ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ⊆ (1...𝑀)) → (((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ↾ (1...𝑀)) = ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))
288282, 286, 287sylancr 587 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ↾ (1...𝑀)) = ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))
289288adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (0...𝑀)) → (((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ↾ (1...𝑀)) = ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))
290281, 289eqtrd 2778 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0...𝑀)) → (((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) = ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))
291 imassrn 5980 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))) ⊆ ran {⟨(𝑀 + 1), (𝑀 + 1)⟩}
292291, 228sseqtri 3957 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))) ⊆ {(𝑀 + 1)}
293 ssrin 4167 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))) ⊆ {(𝑀 + 1)} → (({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))) ∩ (1...𝑀)) ⊆ ({(𝑀 + 1)} ∩ (1...𝑀)))
294292, 293ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25 (({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))) ∩ (1...𝑀)) ⊆ ({(𝑀 + 1)} ∩ (1...𝑀))
295294, 233sseqtrid 3973 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))) ∩ (1...𝑀)) ⊆ ∅)
296 ss0 4332 . . . . . . . . . . . . . . . . . . . . . . . 24 ((({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))) ∩ (1...𝑀)) ⊆ ∅ → (({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))) ∩ (1...𝑀)) = ∅)
297295, 296syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))) ∩ (1...𝑀)) = ∅)
298 fnconstg 6662 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 ∈ V → (({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) Fn ({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))))
299 fnresdisj 6552 . . . . . . . . . . . . . . . . . . . . . . . 24 ((({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) Fn ({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))) → ((({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))) ∩ (1...𝑀)) = ∅ ↔ ((({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) = ∅))
3007, 298, 299mp2b 10 . . . . . . . . . . . . . . . . . . . . . . 23 ((({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))) ∩ (1...𝑀)) = ∅ ↔ ((({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) = ∅)
301297, 300sylib 217 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) = ∅)
302301adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0...𝑀)) → ((({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) = ∅)
303290, 302uneq12d 4098 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0...𝑀)) → ((((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) ∪ ((({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀))) = (((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ∪ ∅))
304179xpeq1i 5615 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) = (((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) ∪ ({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1)))) × {0})
305 xpundir 5656 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) ∪ ({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1)))) × {0}) = (((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ∪ (({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))
306304, 305eqtri 2766 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) = (((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ∪ (({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))
307306reseq1i 5887 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) = ((((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ∪ (({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) ↾ (1...𝑀))
308 resundir 5906 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ∪ (({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) ↾ (1...𝑀)) = ((((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) ∪ ((({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)))
309307, 308eqtr2i 2767 . . . . . . . . . . . . . . . . . . . 20 ((((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) ∪ ((({⟨(𝑀 + 1), (𝑀 + 1)⟩} “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀))) = ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀))
310 un0 4324 . . . . . . . . . . . . . . . . . . . 20 (((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ∪ ∅) = ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})
311303, 309, 3103eqtr3g 2801 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0...𝑀)) → ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) = ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))
312251, 311uneq12d 4098 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (0...𝑀)) → (((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ↾ (1...𝑀)) ∪ ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀))) = (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})))
313215, 312eqtrid 2790 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0...𝑀)) → (((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) ↾ (1...𝑀)) = (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})))
314313fveq1d 6776 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (0...𝑀)) → ((((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) ↾ (1...𝑀))‘𝑛) = ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛))
315214, 314sylan9eqr 2800 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑛 ∈ (1...𝑀)) → (((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛) = ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛))
316212, 315oveq12d 7293 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑛 ∈ (1...𝑀)) → (((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘𝑛) + (((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛)) = ((𝑇𝑛) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛)))
317316mpteq2dva 5174 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑛 ∈ (1...𝑀) ↦ (((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘𝑛) + (((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛))) = (𝑛 ∈ (1...𝑀) ↦ ((𝑇𝑛) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛))))
318317uneq1d 4096 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑛 ∈ (1...𝑀) ↦ (((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘𝑛) + (((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛))) ∪ {⟨(𝑀 + 1), 0⟩}) = ((𝑛 ∈ (1...𝑀) ↦ ((𝑇𝑛) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛))) ∪ {⟨(𝑀 + 1), 0⟩}))
319158, 206, 3183eqtr2d 2784 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑇 ∪ {⟨(𝑀 + 1), 0⟩}) ∘f + ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) = ((𝑛 ∈ (1...𝑀) ↦ ((𝑇𝑛) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛))) ∪ {⟨(𝑀 + 1), 0⟩}))
320319uneq1d 4096 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (((𝑇 ∪ {⟨(𝑀 + 1), 0⟩}) ∘f + ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) = (((𝑛 ∈ (1...𝑀) ↦ ((𝑇𝑛) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛))) ∪ {⟨(𝑀 + 1), 0⟩}) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})))
32183, 320eqtr4d 2781 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) = (((𝑇 ∪ {⟨(𝑀 + 1), 0⟩}) ∘f + ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})))
322321csbeq1d 3836 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝𝐵 = (((𝑇 ∪ {⟨(𝑀 + 1), 0⟩}) ∘f + ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝𝐵)
323322eqeq2d 2749 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑖 = ((𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝𝐵𝑖 = (((𝑇 ∪ {⟨(𝑀 + 1), 0⟩}) ∘f + ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝𝐵))
324323rexbidva 3225 . . . . . 6 (𝜑 → (∃𝑗 ∈ (0...𝑀)𝑖 = ((𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝𝐵 ↔ ∃𝑗 ∈ (0...𝑀)𝑖 = (((𝑇 ∪ {⟨(𝑀 + 1), 0⟩}) ∘f + ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝𝐵))
325324ralbidv 3112 . . . . 5 (𝜑 → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ((𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝𝐵 ↔ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = (((𝑇 ∪ {⟨(𝑀 + 1), 0⟩}) ∘f + ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝𝐵))
326325biimpd 228 . . . 4 (𝜑 → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ((𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝𝐵 → ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = (((𝑇 ∪ {⟨(𝑀 + 1), 0⟩}) ∘f + ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝𝐵))
327 f1ofn 6717 . . . . . . . 8 (𝑈:(1...𝑀)–1-1-onto→(1...𝑀) → 𝑈 Fn (1...𝑀))
32811, 327syl 17 . . . . . . 7 (𝜑𝑈 Fn (1...𝑀))
32975, 75fnsn 6492 . . . . . . . . 9 {⟨(𝑀 + 1), (𝑀 + 1)⟩} Fn {(𝑀 + 1)}
330 fvun2 6860 . . . . . . . . 9 ((𝑈 Fn (1...𝑀) ∧ {⟨(𝑀 + 1), (𝑀 + 1)⟩} Fn {(𝑀 + 1)} ∧ (((1...𝑀) ∩ {(𝑀 + 1)}) = ∅ ∧ (𝑀 + 1) ∈ {(𝑀 + 1)})) → ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩})‘(𝑀 + 1)) = ({⟨(𝑀 + 1), (𝑀 + 1)⟩}‘(𝑀 + 1)))
331329, 330mp3an2 1448 . . . . . . . 8 ((𝑈 Fn (1...𝑀) ∧ (((1...𝑀) ∩ {(𝑀 + 1)}) = ∅ ∧ (𝑀 + 1) ∈ {(𝑀 + 1)})) → ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩})‘(𝑀 + 1)) = ({⟨(𝑀 + 1), (𝑀 + 1)⟩}‘(𝑀 + 1)))
332174, 331mpanr2 701 . . . . . . 7 ((𝑈 Fn (1...𝑀) ∧ ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅) → ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩})‘(𝑀 + 1)) = ({⟨(𝑀 + 1), (𝑀 + 1)⟩}‘(𝑀 + 1)))
333328, 92, 332syl2anc 584 . . . . . 6 (𝜑 → ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩})‘(𝑀 + 1)) = ({⟨(𝑀 + 1), (𝑀 + 1)⟩}‘(𝑀 + 1)))
33475, 75fvsn 7053 . . . . . 6 ({⟨(𝑀 + 1), (𝑀 + 1)⟩}‘(𝑀 + 1)) = (𝑀 + 1)
335333, 334eqtrdi 2794 . . . . 5 (𝜑 → ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩})‘(𝑀 + 1)) = (𝑀 + 1))
336191, 335jca 512 . . . 4 (𝜑 → (((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘(𝑀 + 1)) = 0 ∧ ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩})‘(𝑀 + 1)) = (𝑀 + 1)))
337326, 336jctird 527 . . 3 (𝜑 → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ((𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝𝐵 → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = (((𝑇 ∪ {⟨(𝑀 + 1), 0⟩}) ∘f + ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝𝐵 ∧ (((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘(𝑀 + 1)) = 0 ∧ ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩})‘(𝑀 + 1)) = (𝑀 + 1)))))
338 3anass 1094 . . 3 ((∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = (((𝑇 ∪ {⟨(𝑀 + 1), 0⟩}) ∘f + ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝𝐵 ∧ ((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘(𝑀 + 1)) = 0 ∧ ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩})‘(𝑀 + 1)) = (𝑀 + 1)) ↔ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = (((𝑇 ∪ {⟨(𝑀 + 1), 0⟩}) ∘f + ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝𝐵 ∧ (((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘(𝑀 + 1)) = 0 ∧ ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩})‘(𝑀 + 1)) = (𝑀 + 1))))
339337, 338syl6ibr 251 . 2 (𝜑 → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ((𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝𝐵 → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = (((𝑇 ∪ {⟨(𝑀 + 1), 0⟩}) ∘f + ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝𝐵 ∧ ((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘(𝑀 + 1)) = 0 ∧ ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩})‘(𝑀 + 1)) = (𝑀 + 1))))
3401, 95jctir 521 . . . . . 6 (𝜑 → (𝑇:(1...𝑀)⟶(0..^𝐾) ∧ {⟨(𝑀 + 1), 0⟩}:{(𝑀 + 1)}⟶{0}))
341340, 92, 96syl2anc 584 . . . . 5 (𝜑 → (𝑇 ∪ {⟨(𝑀 + 1), 0⟩}):((1...𝑀) ∪ {(𝑀 + 1)})⟶((0..^𝐾) ∪ {0}))
342341, 114mpbid 231 . . . 4 (𝜑 → (𝑇 ∪ {⟨(𝑀 + 1), 0⟩}):(1...(𝑀 + 1))⟶(0..^𝐾))
343 ovex 7308 . . . . 5 (0..^𝐾) ∈ V
344 ovex 7308 . . . . 5 (1...(𝑀 + 1)) ∈ V
345343, 344elmap 8659 . . . 4 ((𝑇 ∪ {⟨(𝑀 + 1), 0⟩}) ∈ ((0..^𝐾) ↑m (1...(𝑀 + 1))) ↔ (𝑇 ∪ {⟨(𝑀 + 1), 0⟩}):(1...(𝑀 + 1))⟶(0..^𝐾))
346342, 345sylibr 233 . . 3 (𝜑 → (𝑇 ∪ {⟨(𝑀 + 1), 0⟩}) ∈ ((0..^𝐾) ↑m (1...(𝑀 + 1))))
347 ovex 7308 . . . . . . . 8 (1...𝑀) ∈ V
348 f1oexrnex 7774 . . . . . . . 8 ((𝑈:(1...𝑀)–1-1-onto→(1...𝑀) ∧ (1...𝑀) ∈ V) → 𝑈 ∈ V)
34911, 347, 348sylancl 586 . . . . . . 7 (𝜑𝑈 ∈ V)
350 snex 5354 . . . . . . 7 {⟨(𝑀 + 1), (𝑀 + 1)⟩} ∈ V
351 unexg 7599 . . . . . . 7 ((𝑈 ∈ V ∧ {⟨(𝑀 + 1), (𝑀 + 1)⟩} ∈ V) → (𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) ∈ V)
352349, 350, 351sylancl 586 . . . . . 6 (𝜑 → (𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) ∈ V)
353 f1oeq1 6704 . . . . . . 7 (𝑓 = (𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) → (𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1)) ↔ (𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}):(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))))
354353elabg 3607 . . . . . 6 ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) ∈ V → ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) ∈ {𝑓𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))} ↔ (𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}):(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))))
355352, 354syl 17 . . . . 5 (𝜑 → ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) ∈ {𝑓𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))} ↔ (𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}):(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))))
356 f1oeq23 6707 . . . . . 6 (((1...(𝑀 + 1)) = ((1...𝑀) ∪ {(𝑀 + 1)}) ∧ (1...(𝑀 + 1)) = ((1...𝑀) ∪ {(𝑀 + 1)})) → ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}):(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1)) ↔ (𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}):((1...𝑀) ∪ {(𝑀 + 1)})–1-1-onto→((1...𝑀) ∪ {(𝑀 + 1)})))
357106, 106, 356syl2anc 584 . . . . 5 (𝜑 → ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}):(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1)) ↔ (𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}):((1...𝑀) ∪ {(𝑀 + 1)})–1-1-onto→((1...𝑀) ∪ {(𝑀 + 1)})))
358355, 357bitrd 278 . . . 4 (𝜑 → ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) ∈ {𝑓𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))} ↔ (𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}):((1...𝑀) ∪ {(𝑀 + 1)})–1-1-onto→((1...𝑀) ∪ {(𝑀 + 1)})))
359126, 358mpbird 256 . . 3 (𝜑 → (𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) ∈ {𝑓𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})
360346, 359opelxpd 5627 . 2 (𝜑 → ⟨(𝑇 ∪ {⟨(𝑀 + 1), 0⟩}), (𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩})⟩ ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}))
361339, 360jctild 526 1 (𝜑 → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ((𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝𝐵 → (⟨(𝑇 ∪ {⟨(𝑀 + 1), 0⟩}), (𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩})⟩ ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∧ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = (((𝑇 ∪ {⟨(𝑀 + 1), 0⟩}) ∘f + ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝𝐵 ∧ ((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘(𝑀 + 1)) = 0 ∧ ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩})‘(𝑀 + 1)) = (𝑀 + 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  wral 3064  wrex 3065  Vcvv 3432  csb 3832  cun 3885  cin 3886  wss 3887  c0 4256  {csn 4561  cop 4567   class class class wbr 5074  cmpt 5157   × cxp 5587  ccnv 5588  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  Rel wrel 5594  Fun wfun 6427   Fn wfn 6428  wf 6429  ontowfo 6431  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  f cof 7531  m cmap 8615  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cmin 11205  cn 11973  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239  ..^cfzo 13382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383
This theorem is referenced by:  poimirlem4  35781
  Copyright terms: Public domain W3C validator