Step | Hyp | Ref
| Expression |
1 | | poimirlem3.4 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑇:(1...𝑀)⟶(0..^𝐾)) |
2 | 1 | ffnd 6383 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑇 Fn (1...𝑀)) |
3 | 2 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → 𝑇 Fn (1...𝑀)) |
4 | | 1ex 10483 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
V |
5 | | fnconstg 6435 |
. . . . . . . . . . . . . . . . 17
⊢ (1 ∈
V → ((𝑈 “
(1...𝑗)) × {1}) Fn
(𝑈 “ (1...𝑗))) |
6 | 4, 5 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑈 “ (1...𝑗)) × {1}) Fn (𝑈 “ (1...𝑗)) |
7 | | c0ex 10481 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
V |
8 | | fnconstg 6435 |
. . . . . . . . . . . . . . . . 17
⊢ (0 ∈
V → ((𝑈 “
((𝑗 + 1)...𝑀)) × {0}) Fn (𝑈 “ ((𝑗 + 1)...𝑀))) |
9 | 7, 8 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) Fn (𝑈 “ ((𝑗 + 1)...𝑀)) |
10 | 6, 9 | pm3.2i 471 |
. . . . . . . . . . . . . . 15
⊢ (((𝑈 “ (1...𝑗)) × {1}) Fn (𝑈 “ (1...𝑗)) ∧ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) Fn (𝑈 “ ((𝑗 + 1)...𝑀))) |
11 | | poimirlem3.5 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑈:(1...𝑀)–1-1-onto→(1...𝑀)) |
12 | | dff1o3 6489 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑈:(1...𝑀)–1-1-onto→(1...𝑀) ↔ (𝑈:(1...𝑀)–onto→(1...𝑀) ∧ Fun ◡𝑈)) |
13 | 12 | simprbi 497 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑈:(1...𝑀)–1-1-onto→(1...𝑀) → Fun ◡𝑈) |
14 | | imain 6309 |
. . . . . . . . . . . . . . . . 17
⊢ (Fun
◡𝑈 → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑀))) = ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑀)))) |
15 | 11, 13, 14 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑀))) = ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑀)))) |
16 | | elfznn0 12850 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℕ0) |
17 | 16 | nn0red 11804 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ) |
18 | 17 | ltp1d 11418 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 < (𝑗 + 1)) |
19 | | fzdisj 12784 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 < (𝑗 + 1) → ((1...𝑗) ∩ ((𝑗 + 1)...𝑀)) = ∅) |
20 | 18, 19 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0...𝑀) → ((1...𝑗) ∩ ((𝑗 + 1)...𝑀)) = ∅) |
21 | 20 | imaeq2d 5806 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (0...𝑀) → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑀))) = (𝑈 “ ∅)) |
22 | | ima0 5821 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑈 “ ∅) =
∅ |
23 | 21, 22 | syl6eq 2847 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (0...𝑀) → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑀))) = ∅) |
24 | 15, 23 | sylan9req 2852 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑀))) = ∅) |
25 | | fnun 6333 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑈 “
(1...𝑗)) × {1}) Fn
(𝑈 “ (1...𝑗)) ∧ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) Fn (𝑈 “ ((𝑗 + 1)...𝑀))) ∧ ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑀))) = ∅) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})) Fn ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑀)))) |
26 | 10, 24, 25 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})) Fn ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑀)))) |
27 | | imaundi 5884 |
. . . . . . . . . . . . . . . 16
⊢ (𝑈 “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑀))) = ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑀))) |
28 | | nn0p1nn 11784 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ ℕ0
→ (𝑗 + 1) ∈
ℕ) |
29 | | nnuz 12130 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ℕ =
(ℤ≥‘1) |
30 | 28, 29 | syl6eleq 2893 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ ℕ0
→ (𝑗 + 1) ∈
(ℤ≥‘1)) |
31 | 16, 30 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0...𝑀) → (𝑗 + 1) ∈
(ℤ≥‘1)) |
32 | | elfzuz3 12755 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0...𝑀) → 𝑀 ∈ (ℤ≥‘𝑗)) |
33 | | fzsplit2 12782 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑗 + 1) ∈
(ℤ≥‘1) ∧ 𝑀 ∈ (ℤ≥‘𝑗)) → (1...𝑀) = ((1...𝑗) ∪ ((𝑗 + 1)...𝑀))) |
34 | 31, 32, 33 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (0...𝑀) → (1...𝑀) = ((1...𝑗) ∪ ((𝑗 + 1)...𝑀))) |
35 | 34 | eqcomd 2801 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0...𝑀) → ((1...𝑗) ∪ ((𝑗 + 1)...𝑀)) = (1...𝑀)) |
36 | 35 | imaeq2d 5806 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (0...𝑀) → (𝑈 “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑀))) = (𝑈 “ (1...𝑀))) |
37 | | f1ofo 6490 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑈:(1...𝑀)–1-1-onto→(1...𝑀) → 𝑈:(1...𝑀)–onto→(1...𝑀)) |
38 | | foima 6463 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑈:(1...𝑀)–onto→(1...𝑀) → (𝑈 “ (1...𝑀)) = (1...𝑀)) |
39 | 11, 37, 38 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑈 “ (1...𝑀)) = (1...𝑀)) |
40 | 36, 39 | sylan9eqr 2853 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑈 “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑀))) = (1...𝑀)) |
41 | 27, 40 | syl5eqr 2845 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑀))) = (1...𝑀)) |
42 | 41 | fneq2d 6317 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})) Fn ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑀))) ↔ (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})) Fn (1...𝑀))) |
43 | 26, 42 | mpbid 233 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})) Fn (1...𝑀)) |
44 | | ovexd 7050 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (1...𝑀) ∈ V) |
45 | | inidm 4115 |
. . . . . . . . . . . . 13
⊢
((1...𝑀) ∩
(1...𝑀)) = (1...𝑀) |
46 | | eqidd 2796 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑛 ∈ (1...𝑀)) → (𝑇‘𝑛) = (𝑇‘𝑛)) |
47 | | eqidd 2796 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑛 ∈ (1...𝑀)) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛) = ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛)) |
48 | 3, 43, 44, 44, 45, 46, 47 | offval 7274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑇 ∘𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) = (𝑛 ∈ (1...𝑀) ↦ ((𝑇‘𝑛) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛)))) |
49 | | poimirlem4.2 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
50 | | nn0p1nn 11784 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑀 ∈ ℕ0
→ (𝑀 + 1) ∈
ℕ) |
51 | 49, 50 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑀 + 1) ∈ ℕ) |
52 | 51 | nnzd 11935 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑀 + 1) ∈ ℤ) |
53 | | uzid 12108 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 + 1) ∈ ℤ →
(𝑀 + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
54 | | peano2uz 12150 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 + 1) ∈
(ℤ≥‘(𝑀 + 1)) → ((𝑀 + 1) + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
55 | 52, 53, 54 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑀 + 1) + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
56 | | poimirlem4.3 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑀 < 𝑁) |
57 | 49 | nn0zd 11934 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑀 ∈ ℤ) |
58 | | poimir.0 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑁 ∈ ℕ) |
59 | 58 | nnzd 11935 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ∈ ℤ) |
60 | | zltp1le 11881 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
61 | | peano2z 11872 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑀 ∈ ℤ → (𝑀 + 1) ∈
ℤ) |
62 | | eluz 12107 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈
(ℤ≥‘(𝑀 + 1)) ↔ (𝑀 + 1) ≤ 𝑁)) |
63 | 61, 62 | sylan 580 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈
(ℤ≥‘(𝑀 + 1)) ↔ (𝑀 + 1) ≤ 𝑁)) |
64 | 60, 63 | bitr4d 283 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) |
65 | 57, 59, 64 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑀 < 𝑁 ↔ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) |
66 | 56, 65 | mpbid 233 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) |
67 | | fzsplit2 12782 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑀 + 1) + 1) ∈
(ℤ≥‘(𝑀 + 1)) ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → ((𝑀 + 1)...𝑁) = (((𝑀 + 1)...(𝑀 + 1)) ∪ (((𝑀 + 1) + 1)...𝑁))) |
68 | 55, 66, 67 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑀 + 1)...𝑁) = (((𝑀 + 1)...(𝑀 + 1)) ∪ (((𝑀 + 1) + 1)...𝑁))) |
69 | | fzsn 12799 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 + 1) ∈ ℤ →
((𝑀 + 1)...(𝑀 + 1)) = {(𝑀 + 1)}) |
70 | 52, 69 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑀 + 1)...(𝑀 + 1)) = {(𝑀 + 1)}) |
71 | 70 | uneq1d 4059 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (((𝑀 + 1)...(𝑀 + 1)) ∪ (((𝑀 + 1) + 1)...𝑁)) = ({(𝑀 + 1)} ∪ (((𝑀 + 1) + 1)...𝑁))) |
72 | 68, 71 | eqtrd 2831 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑀 + 1)...𝑁) = ({(𝑀 + 1)} ∪ (((𝑀 + 1) + 1)...𝑁))) |
73 | 72 | xpeq1d 5472 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((𝑀 + 1)...𝑁) × {0}) = (({(𝑀 + 1)} ∪ (((𝑀 + 1) + 1)...𝑁)) × {0})) |
74 | | xpundir 5507 |
. . . . . . . . . . . . . . 15
⊢ (({(𝑀 + 1)} ∪ (((𝑀 + 1) + 1)...𝑁)) × {0}) = (({(𝑀 + 1)} × {0}) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) |
75 | | ovex 7048 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 + 1) ∈ V |
76 | 75, 7 | xpsn 6766 |
. . . . . . . . . . . . . . . 16
⊢ ({(𝑀 + 1)} × {0}) =
{〈(𝑀 + 1),
0〉} |
77 | 76 | uneq1i 4056 |
. . . . . . . . . . . . . . 15
⊢ (({(𝑀 + 1)} × {0}) ∪
((((𝑀 + 1) + 1)...𝑁) × {0})) = ({〈(𝑀 + 1), 0〉} ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) |
78 | 74, 77 | eqtri 2819 |
. . . . . . . . . . . . . 14
⊢ (({(𝑀 + 1)} ∪ (((𝑀 + 1) + 1)...𝑁)) × {0}) = ({〈(𝑀 + 1), 0〉} ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) |
79 | 73, 78 | syl6eq 2847 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((𝑀 + 1)...𝑁) × {0}) = ({〈(𝑀 + 1), 0〉} ∪ ((((𝑀 + 1) + 1)...𝑁) × {0}))) |
80 | 79 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((𝑀 + 1)...𝑁) × {0}) = ({〈(𝑀 + 1), 0〉} ∪ ((((𝑀 + 1) + 1)...𝑁) × {0}))) |
81 | 48, 80 | uneq12d 4061 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) = ((𝑛 ∈ (1...𝑀) ↦ ((𝑇‘𝑛) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛))) ∪ ({〈(𝑀 + 1), 0〉} ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})))) |
82 | | unass 4063 |
. . . . . . . . . . 11
⊢ (((𝑛 ∈ (1...𝑀) ↦ ((𝑇‘𝑛) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛))) ∪ {〈(𝑀 + 1), 0〉}) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) = ((𝑛 ∈ (1...𝑀) ↦ ((𝑇‘𝑛) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛))) ∪ ({〈(𝑀 + 1), 0〉} ∪ ((((𝑀 + 1) + 1)...𝑁) × {0}))) |
83 | 81, 82 | syl6eqr 2849 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) = (((𝑛 ∈ (1...𝑀) ↦ ((𝑇‘𝑛) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛))) ∪ {〈(𝑀 + 1), 0〉}) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0}))) |
84 | 49 | nn0red 11804 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑀 ∈ ℝ) |
85 | 84 | ltp1d 11418 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑀 < (𝑀 + 1)) |
86 | 51 | nnred 11501 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑀 + 1) ∈ ℝ) |
87 | 84, 86 | ltnled 10634 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑀 < (𝑀 + 1) ↔ ¬ (𝑀 + 1) ≤ 𝑀)) |
88 | 85, 87 | mpbid 233 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ¬ (𝑀 + 1) ≤ 𝑀) |
89 | | elfzle2 12761 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 + 1) ∈ (1...𝑀) → (𝑀 + 1) ≤ 𝑀) |
90 | 88, 89 | nsyl 142 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ¬ (𝑀 + 1) ∈ (1...𝑀)) |
91 | | disjsn 4554 |
. . . . . . . . . . . . . . . . . 18
⊢
(((1...𝑀) ∩
{(𝑀 + 1)}) = ∅ ↔
¬ (𝑀 + 1) ∈
(1...𝑀)) |
92 | 90, 91 | sylibr 235 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅) |
93 | | eqid 2795 |
. . . . . . . . . . . . . . . . . . 19
⊢
{〈(𝑀 + 1),
0〉} = {〈(𝑀 + 1),
0〉} |
94 | 75, 7 | fsn 6760 |
. . . . . . . . . . . . . . . . . . 19
⊢
({〈(𝑀 + 1),
0〉}:{(𝑀 +
1)}⟶{0} ↔ {〈(𝑀 + 1), 0〉} = {〈(𝑀 + 1), 0〉}) |
95 | 93, 94 | mpbir 232 |
. . . . . . . . . . . . . . . . . 18
⊢
{〈(𝑀 + 1),
0〉}:{(𝑀 +
1)}⟶{0} |
96 | | fun 6408 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑇:(1...𝑀)⟶(0..^𝐾) ∧ {〈(𝑀 + 1), 0〉}:{(𝑀 + 1)}⟶{0}) ∧ ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅) → (𝑇 ∪ {〈(𝑀 + 1), 0〉}):((1...𝑀) ∪ {(𝑀 + 1)})⟶((0..^𝐾) ∪ {0})) |
97 | 95, 96 | mpanl2 697 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑇:(1...𝑀)⟶(0..^𝐾) ∧ ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅) → (𝑇 ∪ {〈(𝑀 + 1), 0〉}):((1...𝑀) ∪ {(𝑀 + 1)})⟶((0..^𝐾) ∪ {0})) |
98 | 1, 92, 97 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑇 ∪ {〈(𝑀 + 1), 0〉}):((1...𝑀) ∪ {(𝑀 + 1)})⟶((0..^𝐾) ∪ {0})) |
99 | | 1z 11861 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℤ |
100 | | nn0uz 12129 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
ℕ0 = (ℤ≥‘0) |
101 | | 1m1e0 11557 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (1
− 1) = 0 |
102 | 101 | fveq2i 6541 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(ℤ≥‘(1 − 1)) =
(ℤ≥‘0) |
103 | 100, 102 | eqtr4i 2822 |
. . . . . . . . . . . . . . . . . . . 20
⊢
ℕ0 = (ℤ≥‘(1 −
1)) |
104 | 49, 103 | syl6eleq 2893 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘(1
− 1))) |
105 | | fzsuc2 12815 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((1
∈ ℤ ∧ 𝑀
∈ (ℤ≥‘(1 − 1))) → (1...(𝑀 + 1)) = ((1...𝑀) ∪ {(𝑀 + 1)})) |
106 | 99, 104, 105 | sylancr 587 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (1...(𝑀 + 1)) = ((1...𝑀) ∪ {(𝑀 + 1)})) |
107 | 106 | eqcomd 2801 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((1...𝑀) ∪ {(𝑀 + 1)}) = (1...(𝑀 + 1))) |
108 | | poimirlem4.1 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐾 ∈ ℕ) |
109 | | lbfzo0 12927 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0 ∈
(0..^𝐾) ↔ 𝐾 ∈
ℕ) |
110 | 108, 109 | sylibr 235 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 0 ∈ (0..^𝐾)) |
111 | 110 | snssd 4649 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → {0} ⊆ (0..^𝐾)) |
112 | | ssequn2 4080 |
. . . . . . . . . . . . . . . . . 18
⊢ ({0}
⊆ (0..^𝐾) ↔
((0..^𝐾) ∪ {0}) =
(0..^𝐾)) |
113 | 111, 112 | sylib 219 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((0..^𝐾) ∪ {0}) = (0..^𝐾)) |
114 | 107, 113 | feq23d 6377 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑇 ∪ {〈(𝑀 + 1), 0〉}):((1...𝑀) ∪ {(𝑀 + 1)})⟶((0..^𝐾) ∪ {0}) ↔ (𝑇 ∪ {〈(𝑀 + 1), 0〉}):(1...(𝑀 + 1))⟶(0..^𝐾))) |
115 | 98, 114 | mpbid 233 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑇 ∪ {〈(𝑀 + 1), 0〉}):(1...(𝑀 + 1))⟶(0..^𝐾)) |
116 | 115 | ffnd 6383 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑇 ∪ {〈(𝑀 + 1), 0〉}) Fn (1...(𝑀 + 1))) |
117 | 116 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑇 ∪ {〈(𝑀 + 1), 0〉}) Fn (1...(𝑀 + 1))) |
118 | | fnconstg 6435 |
. . . . . . . . . . . . . . . . 17
⊢ (1 ∈
V → (((𝑈 ∪
{〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) Fn ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗))) |
119 | 4, 118 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) Fn ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) |
120 | | fnconstg 6435 |
. . . . . . . . . . . . . . . . 17
⊢ (0 ∈
V → (((𝑈 ∪
{〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) Fn ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1)))) |
121 | 7, 120 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) Fn ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) |
122 | 119, 121 | pm3.2i 471 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) Fn ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) ∧ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) Fn ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1)))) |
123 | 75, 75 | f1osn 6522 |
. . . . . . . . . . . . . . . . . . 19
⊢
{〈(𝑀 + 1),
(𝑀 + 1)〉}:{(𝑀 + 1)}–1-1-onto→{(𝑀 + 1)} |
124 | | f1oun 6502 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑈:(1...𝑀)–1-1-onto→(1...𝑀) ∧ {〈(𝑀 + 1), (𝑀 + 1)〉}:{(𝑀 + 1)}–1-1-onto→{(𝑀 + 1)}) ∧ (((1...𝑀) ∩ {(𝑀 + 1)}) = ∅ ∧ ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅)) → (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):((1...𝑀) ∪ {(𝑀 + 1)})–1-1-onto→((1...𝑀) ∪ {(𝑀 + 1)})) |
125 | 123, 124 | mpanl2 697 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑈:(1...𝑀)–1-1-onto→(1...𝑀) ∧ (((1...𝑀) ∩ {(𝑀 + 1)}) = ∅ ∧ ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅)) → (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):((1...𝑀) ∪ {(𝑀 + 1)})–1-1-onto→((1...𝑀) ∪ {(𝑀 + 1)})) |
126 | 11, 92, 92, 125 | syl12anc 833 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):((1...𝑀) ∪ {(𝑀 + 1)})–1-1-onto→((1...𝑀) ∪ {(𝑀 + 1)})) |
127 | | dff1o3 6489 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):((1...𝑀) ∪ {(𝑀 + 1)})–1-1-onto→((1...𝑀) ∪ {(𝑀 + 1)}) ↔ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):((1...𝑀) ∪ {(𝑀 + 1)})–onto→((1...𝑀) ∪ {(𝑀 + 1)}) ∧ Fun ◡(𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}))) |
128 | 127 | simprbi 497 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):((1...𝑀) ∪ {(𝑀 + 1)})–1-1-onto→((1...𝑀) ∪ {(𝑀 + 1)}) → Fun ◡(𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})) |
129 | | imain 6309 |
. . . . . . . . . . . . . . . . 17
⊢ (Fun
◡(𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((1...𝑗) ∩ ((𝑗 + 1)...(𝑀 + 1)))) = (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) ∩ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))))) |
130 | 126, 128,
129 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((1...𝑗) ∩ ((𝑗 + 1)...(𝑀 + 1)))) = (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) ∩ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))))) |
131 | | fzdisj 12784 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 < (𝑗 + 1) → ((1...𝑗) ∩ ((𝑗 + 1)...(𝑀 + 1))) = ∅) |
132 | 18, 131 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0...𝑀) → ((1...𝑗) ∩ ((𝑗 + 1)...(𝑀 + 1))) = ∅) |
133 | 132 | imaeq2d 5806 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (0...𝑀) → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((1...𝑗) ∩ ((𝑗 + 1)...(𝑀 + 1)))) = ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “
∅)) |
134 | | ima0 5821 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ∅) =
∅ |
135 | 133, 134 | syl6eq 2847 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (0...𝑀) → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((1...𝑗) ∩ ((𝑗 + 1)...(𝑀 + 1)))) = ∅) |
136 | 130, 135 | sylan9req 2852 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) ∩ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1)))) = ∅) |
137 | | fnun 6333 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑈 ∪
{〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) Fn ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) ∧ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) Fn ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1)))) ∧ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) ∩ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1)))) = ∅) → ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) Fn (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) ∪ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))))) |
138 | 122, 136,
137 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) Fn (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) ∪ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))))) |
139 | | f1ofo 6490 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):((1...𝑀) ∪ {(𝑀 + 1)})–1-1-onto→((1...𝑀) ∪ {(𝑀 + 1)}) → (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):((1...𝑀) ∪ {(𝑀 + 1)})–onto→((1...𝑀) ∪ {(𝑀 + 1)})) |
140 | | foima 6463 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):((1...𝑀) ∪ {(𝑀 + 1)})–onto→((1...𝑀) ∪ {(𝑀 + 1)}) → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((1...𝑀) ∪ {(𝑀 + 1)})) = ((1...𝑀) ∪ {(𝑀 + 1)})) |
141 | 126, 139,
140 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((1...𝑀) ∪ {(𝑀 + 1)})) = ((1...𝑀) ∪ {(𝑀 + 1)})) |
142 | 106 | imaeq2d 5806 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...(𝑀 + 1))) = ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((1...𝑀) ∪ {(𝑀 + 1)}))) |
143 | 141, 142,
106 | 3eqtr4d 2841 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...(𝑀 + 1))) = (1...(𝑀 + 1))) |
144 | | peano2uz 12150 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑀 ∈
(ℤ≥‘𝑗) → (𝑀 + 1) ∈
(ℤ≥‘𝑗)) |
145 | 32, 144 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (0...𝑀) → (𝑀 + 1) ∈
(ℤ≥‘𝑗)) |
146 | | fzsplit2 12782 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑗 + 1) ∈
(ℤ≥‘1) ∧ (𝑀 + 1) ∈
(ℤ≥‘𝑗)) → (1...(𝑀 + 1)) = ((1...𝑗) ∪ ((𝑗 + 1)...(𝑀 + 1)))) |
147 | 31, 145, 146 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0...𝑀) → (1...(𝑀 + 1)) = ((1...𝑗) ∪ ((𝑗 + 1)...(𝑀 + 1)))) |
148 | 147 | imaeq2d 5806 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (0...𝑀) → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...(𝑀 + 1))) = ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((1...𝑗) ∪ ((𝑗 + 1)...(𝑀 + 1))))) |
149 | 143, 148 | sylan9req 2852 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (1...(𝑀 + 1)) = ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((1...𝑗) ∪ ((𝑗 + 1)...(𝑀 + 1))))) |
150 | | imaundi 5884 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((1...𝑗) ∪ ((𝑗 + 1)...(𝑀 + 1)))) = (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) ∪ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1)))) |
151 | 149, 150 | syl6eq 2847 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (1...(𝑀 + 1)) = (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) ∪ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))))) |
152 | 151 | fneq2d 6317 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) Fn (1...(𝑀 + 1)) ↔ ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) Fn (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) ∪ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1)))))) |
153 | 138, 152 | mpbird 258 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) Fn (1...(𝑀 + 1))) |
154 | | ovexd 7050 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (1...(𝑀 + 1)) ∈ V) |
155 | | inidm 4115 |
. . . . . . . . . . . . 13
⊢
((1...(𝑀 + 1)) ∩
(1...(𝑀 + 1))) =
(1...(𝑀 +
1)) |
156 | | eqidd 2796 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑛 ∈ (1...(𝑀 + 1))) → ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) = ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛)) |
157 | | eqidd 2796 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑛 ∈ (1...(𝑀 + 1))) → (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛) = (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛)) |
158 | 117, 153,
154, 154, 155, 156, 157 | offval 7274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘𝑓
+ ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) = (𝑛 ∈ (1...(𝑀 + 1)) ↦ (((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) + (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛)))) |
159 | | ovexd 7050 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑀 + 1) ∈ V) |
160 | 7 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → 0 ∈ V) |
161 | 107 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((1...𝑀) ∪ {(𝑀 + 1)}) = (1...(𝑀 + 1))) |
162 | | fveq2 6538 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = (𝑀 + 1) → ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) = ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1))) |
163 | 75 | snid 4506 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑀 + 1) ∈ {(𝑀 + 1)} |
164 | 75, 7 | fnsn 6282 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
{〈(𝑀 + 1),
0〉} Fn {(𝑀 +
1)} |
165 | | fvun2 6622 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑇 Fn (1...𝑀) ∧ {〈(𝑀 + 1), 0〉} Fn {(𝑀 + 1)} ∧ (((1...𝑀) ∩ {(𝑀 + 1)}) = ∅ ∧ (𝑀 + 1) ∈ {(𝑀 + 1)})) → ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1)) = ({〈(𝑀 + 1), 0〉}‘(𝑀 + 1))) |
166 | 164, 165 | mp3an2 1441 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑇 Fn (1...𝑀) ∧ (((1...𝑀) ∩ {(𝑀 + 1)}) = ∅ ∧ (𝑀 + 1) ∈ {(𝑀 + 1)})) → ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1)) = ({〈(𝑀 + 1), 0〉}‘(𝑀 + 1))) |
167 | 163, 166 | mpanr2 700 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑇 Fn (1...𝑀) ∧ ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅) → ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1)) = ({〈(𝑀 + 1), 0〉}‘(𝑀 + 1))) |
168 | 2, 92, 167 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1)) = ({〈(𝑀 + 1), 0〉}‘(𝑀 + 1))) |
169 | 75, 7 | fvsn 6806 |
. . . . . . . . . . . . . . . . . 18
⊢
({〈(𝑀 + 1),
0〉}‘(𝑀 + 1)) =
0 |
170 | 168, 169 | syl6eq 2847 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1)) = 0) |
171 | 162, 170 | sylan9eqr 2853 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 = (𝑀 + 1)) → ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) = 0) |
172 | 171 | adantlr 711 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑛 = (𝑀 + 1)) → ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) = 0) |
173 | | fveq2 6538 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑀 + 1) → (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛) = (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘(𝑀 + 1))) |
174 | | imadmrn 5816 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (({(𝑀 + 1)} × {(𝑀 + 1)}) “ dom ({(𝑀 + 1)} × {(𝑀 + 1)})) = ran ({(𝑀 + 1)} × {(𝑀 + 1)}) |
175 | 75, 75 | xpsn 6766 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ({(𝑀 + 1)} × {(𝑀 + 1)}) = {〈(𝑀 + 1), (𝑀 + 1)〉} |
176 | 175 | imaeq1i 5803 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (({(𝑀 + 1)} × {(𝑀 + 1)}) “ dom ({(𝑀 + 1)} × {(𝑀 + 1)})) = ({〈(𝑀 + 1), (𝑀 + 1)〉} “ dom ({(𝑀 + 1)} × {(𝑀 + 1)})) |
177 | | dmxpid 5682 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ dom
({(𝑀 + 1)} × {(𝑀 + 1)}) = {(𝑀 + 1)} |
178 | 177 | imaeq2i 5804 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
({〈(𝑀 + 1),
(𝑀 + 1)〉} “ dom
({(𝑀 + 1)} × {(𝑀 + 1)})) = ({〈(𝑀 + 1), (𝑀 + 1)〉} “ {(𝑀 + 1)}) |
179 | 176, 178 | eqtri 2819 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (({(𝑀 + 1)} × {(𝑀 + 1)}) “ dom ({(𝑀 + 1)} × {(𝑀 + 1)})) = ({〈(𝑀 + 1), (𝑀 + 1)〉} “ {(𝑀 + 1)}) |
180 | | rnxpid 5906 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ran
({(𝑀 + 1)} × {(𝑀 + 1)}) = {(𝑀 + 1)} |
181 | 174, 179,
180 | 3eqtr3ri 2828 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ {(𝑀 + 1)} = ({〈(𝑀 + 1), (𝑀 + 1)〉} “ {(𝑀 + 1)}) |
182 | | eluzp1p1 12119 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑀 ∈
(ℤ≥‘𝑗) → (𝑀 + 1) ∈
(ℤ≥‘(𝑗 + 1))) |
183 | | eluzfz2 12765 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑀 + 1) ∈
(ℤ≥‘(𝑗 + 1)) → (𝑀 + 1) ∈ ((𝑗 + 1)...(𝑀 + 1))) |
184 | 32, 182, 183 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (0...𝑀) → (𝑀 + 1) ∈ ((𝑗 + 1)...(𝑀 + 1))) |
185 | 184 | snssd 4649 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ (0...𝑀) → {(𝑀 + 1)} ⊆ ((𝑗 + 1)...(𝑀 + 1))) |
186 | | imass2 5841 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ({(𝑀 + 1)} ⊆ ((𝑗 + 1)...(𝑀 + 1)) → ({〈(𝑀 + 1), (𝑀 + 1)〉} “ {(𝑀 + 1)}) ⊆ ({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1)))) |
187 | 185, 186 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 ∈ (0...𝑀) → ({〈(𝑀 + 1), (𝑀 + 1)〉} “ {(𝑀 + 1)}) ⊆ ({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1)))) |
188 | 181, 187 | eqsstrid 3936 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ (0...𝑀) → {(𝑀 + 1)} ⊆ ({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1)))) |
189 | | ssel 3883 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ({(𝑀 + 1)} ⊆ ({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) → ((𝑀 + 1) ∈ {(𝑀 + 1)} → (𝑀 + 1) ∈ ({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))))) |
190 | 188, 163,
189 | mpisyl 21 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ (0...𝑀) → (𝑀 + 1) ∈ ({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1)))) |
191 | | elun2 4074 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑀 + 1) ∈ ({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) → (𝑀 + 1) ∈ ((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) ∪ ({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))))) |
192 | 190, 191 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0...𝑀) → (𝑀 + 1) ∈ ((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) ∪ ({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))))) |
193 | | imaundir 5885 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) = ((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) ∪ ({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1)))) |
194 | 192, 193 | syl6eleqr 2894 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (0...𝑀) → (𝑀 + 1) ∈ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1)))) |
195 | 194 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑀 + 1) ∈ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1)))) |
196 | | fvun2 6622 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑈 ∪
{〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) Fn ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) ∧ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) Fn ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) ∧ ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) ∩ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1)))) = ∅ ∧ (𝑀 + 1) ∈ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))))) → (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘(𝑀 + 1)) = ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})‘(𝑀 + 1))) |
197 | 119, 121,
196 | mp3an12 1443 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑈 ∪
{〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) ∩ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1)))) = ∅ ∧ (𝑀 + 1) ∈ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1)))) → (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘(𝑀 + 1)) = ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})‘(𝑀 + 1))) |
198 | 136, 195,
197 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘(𝑀 + 1)) = ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})‘(𝑀 + 1))) |
199 | 7 | fvconst2 6833 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 + 1) ∈ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) → ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})‘(𝑀 + 1)) = 0) |
200 | 194, 199 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0...𝑀) → ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})‘(𝑀 + 1)) = 0) |
201 | 200 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})‘(𝑀 + 1)) = 0) |
202 | 198, 201 | eqtrd 2831 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘(𝑀 + 1)) = 0) |
203 | 173, 202 | sylan9eqr 2853 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑛 = (𝑀 + 1)) → (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛) = 0) |
204 | 172, 203 | oveq12d 7034 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑛 = (𝑀 + 1)) → (((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) + (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛)) = (0 + 0)) |
205 | | 00id 10662 |
. . . . . . . . . . . . . 14
⊢ (0 + 0) =
0 |
206 | 204, 205 | syl6eq 2847 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑛 = (𝑀 + 1)) → (((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) + (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛)) = 0) |
207 | 159, 160,
161, 206 | fmptapd 6796 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝑛 ∈ (1...𝑀) ↦ (((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) + (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛))) ∪ {〈(𝑀 + 1), 0〉}) = (𝑛 ∈ (1...(𝑀 + 1)) ↦ (((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) + (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛)))) |
208 | 2, 92 | jca 512 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑇 Fn (1...𝑀) ∧ ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅)) |
209 | | fvun1 6621 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑇 Fn (1...𝑀) ∧ {〈(𝑀 + 1), 0〉} Fn {(𝑀 + 1)} ∧ (((1...𝑀) ∩ {(𝑀 + 1)}) = ∅ ∧ 𝑛 ∈ (1...𝑀))) → ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) = (𝑇‘𝑛)) |
210 | 164, 209 | mp3an2 1441 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑇 Fn (1...𝑀) ∧ (((1...𝑀) ∩ {(𝑀 + 1)}) = ∅ ∧ 𝑛 ∈ (1...𝑀))) → ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) = (𝑇‘𝑛)) |
211 | 210 | anassrs 468 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑇 Fn (1...𝑀) ∧ ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅) ∧ 𝑛 ∈ (1...𝑀)) → ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) = (𝑇‘𝑛)) |
212 | 208, 211 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) = (𝑇‘𝑛)) |
213 | 212 | adantlr 711 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑛 ∈ (1...𝑀)) → ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) = (𝑇‘𝑛)) |
214 | | fvres 6557 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ (1...𝑀) → ((((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) ↾ (1...𝑀))‘𝑛) = (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛)) |
215 | 214 | eqcomd 2801 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ (1...𝑀) → (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛) = ((((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) ↾ (1...𝑀))‘𝑛)) |
216 | | resundir 5749 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑈 ∪
{〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) ↾ (1...𝑀)) = (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ↾
(1...𝑀)) ∪ ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀))) |
217 | | relxp 5461 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ Rel
((𝑈 “ (1...𝑗)) × {1}) |
218 | | dmxpss 5904 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ dom
((𝑈 “ (1...𝑗)) × {1}) ⊆ (𝑈 “ (1...𝑗)) |
219 | | imassrn 5817 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑈 “ (1...𝑗)) ⊆ ran 𝑈 |
220 | 218, 219 | sstri 3898 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ dom
((𝑈 “ (1...𝑗)) × {1}) ⊆ ran
𝑈 |
221 | | f1of 6483 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑈:(1...𝑀)–1-1-onto→(1...𝑀) → 𝑈:(1...𝑀)⟶(1...𝑀)) |
222 | | frn 6388 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑈:(1...𝑀)⟶(1...𝑀) → ran 𝑈 ⊆ (1...𝑀)) |
223 | 11, 221, 222 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ran 𝑈 ⊆ (1...𝑀)) |
224 | 220, 223 | syl5ss 3900 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → dom ((𝑈 “ (1...𝑗)) × {1}) ⊆ (1...𝑀)) |
225 | | relssres 5774 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((Rel
((𝑈 “ (1...𝑗)) × {1}) ∧ dom
((𝑈 “ (1...𝑗)) × {1}) ⊆
(1...𝑀)) → (((𝑈 “ (1...𝑗)) × {1}) ↾ (1...𝑀)) = ((𝑈 “ (1...𝑗)) × {1})) |
226 | 217, 224,
225 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (((𝑈 “ (1...𝑗)) × {1}) ↾ (1...𝑀)) = ((𝑈 “ (1...𝑗)) × {1})) |
227 | 226 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((𝑈 “ (1...𝑗)) × {1}) ↾ (1...𝑀)) = ((𝑈 “ (1...𝑗)) × {1})) |
228 | | imassrn 5817 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
({〈(𝑀 + 1),
(𝑀 + 1)〉} “
(1...𝑗)) ⊆ ran
{〈(𝑀 + 1), (𝑀 + 1)〉} |
229 | 75 | rnsnop 5956 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ran
{〈(𝑀 + 1), (𝑀 + 1)〉} = {(𝑀 + 1)} |
230 | 228, 229 | sseqtri 3924 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
({〈(𝑀 + 1),
(𝑀 + 1)〉} “
(1...𝑗)) ⊆ {(𝑀 + 1)} |
231 | | ssrin 4130 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(({〈(𝑀 + 1),
(𝑀 + 1)〉} “
(1...𝑗)) ⊆ {(𝑀 + 1)} → (({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) ∩ (1...𝑀)) ⊆ ({(𝑀 + 1)} ∩ (1...𝑀))) |
232 | 230, 231 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(({〈(𝑀 + 1),
(𝑀 + 1)〉} “
(1...𝑗)) ∩ (1...𝑀)) ⊆ ({(𝑀 + 1)} ∩ (1...𝑀)) |
233 | | incom 4099 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ({(𝑀 + 1)} ∩ (1...𝑀)) = ((1...𝑀) ∩ {(𝑀 + 1)}) |
234 | 233, 92 | syl5eq 2843 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → ({(𝑀 + 1)} ∩ (1...𝑀)) = ∅) |
235 | 232, 234 | sseqtrid 3940 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) ∩ (1...𝑀)) ⊆ ∅) |
236 | | ss0 4272 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((({〈(𝑀 + 1),
(𝑀 + 1)〉} “
(1...𝑗)) ∩ (1...𝑀)) ⊆ ∅ →
(({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) ∩ (1...𝑀)) = ∅) |
237 | 235, 236 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) ∩ (1...𝑀)) = ∅) |
238 | | fnconstg 6435 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (1 ∈
V → (({〈(𝑀 + 1),
(𝑀 + 1)〉} “
(1...𝑗)) × {1}) Fn
({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗))) |
239 | | fnresdisj 6337 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((({〈(𝑀 + 1),
(𝑀 + 1)〉} “
(1...𝑗)) × {1}) Fn
({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) → ((({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) ∩ (1...𝑀)) = ∅ ↔ ((({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) × {1}) ↾ (1...𝑀)) = ∅)) |
240 | 4, 238, 239 | mp2b 10 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((({〈(𝑀 + 1),
(𝑀 + 1)〉} “
(1...𝑗)) ∩ (1...𝑀)) = ∅ ↔
((({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) × {1}) ↾
(1...𝑀)) =
∅) |
241 | 237, 240 | sylib 219 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) × {1}) ↾ (1...𝑀)) = ∅) |
242 | 241 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) × {1}) ↾ (1...𝑀)) = ∅) |
243 | 227, 242 | uneq12d 4061 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((((𝑈 “ (1...𝑗)) × {1}) ↾ (1...𝑀)) ∪ ((({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) × {1}) ↾ (1...𝑀))) = (((𝑈 “ (1...𝑗)) × {1}) ∪
∅)) |
244 | | imaundir 5885 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) = ((𝑈 “ (1...𝑗)) ∪ ({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗))) |
245 | 244 | xpeq1i 5469 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) = (((𝑈 “ (1...𝑗)) ∪ ({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗))) × {1}) |
246 | | xpundir 5507 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑈 “ (1...𝑗)) ∪ ({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗))) × {1}) = (((𝑈 “ (1...𝑗)) × {1}) ∪ (({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) × {1})) |
247 | 245, 246 | eqtri 2819 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) = (((𝑈 “ (1...𝑗)) × {1}) ∪ (({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) × {1})) |
248 | 247 | reseq1i 5730 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ↾
(1...𝑀)) = ((((𝑈 “ (1...𝑗)) × {1}) ∪ (({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) × {1})) ↾ (1...𝑀)) |
249 | | resundir 5749 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑈 “ (1...𝑗)) × {1}) ∪ (({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) × {1})) ↾ (1...𝑀)) = ((((𝑈 “ (1...𝑗)) × {1}) ↾ (1...𝑀)) ∪ ((({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) × {1}) ↾ (1...𝑀))) |
250 | 248, 249 | eqtr2i 2820 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑈 “ (1...𝑗)) × {1}) ↾ (1...𝑀)) ∪ ((({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) × {1}) ↾ (1...𝑀))) = ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ↾
(1...𝑀)) |
251 | | un0 4264 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑈 “ (1...𝑗)) × {1}) ∪ ∅) = ((𝑈 “ (1...𝑗)) × {1}) |
252 | 243, 250,
251 | 3eqtr3g 2854 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ↾
(1...𝑀)) = ((𝑈 “ (1...𝑗)) × {1})) |
253 | | f1odm 6487 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑈:(1...𝑀)–1-1-onto→(1...𝑀) → dom 𝑈 = (1...𝑀)) |
254 | 11, 253 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → dom 𝑈 = (1...𝑀)) |
255 | 254 | ineq2d 4109 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → (((𝑗 + 1)...(𝑀 + 1)) ∩ dom 𝑈) = (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑀))) |
256 | 255 | reseq2d 5734 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝑈 ↾ (((𝑗 + 1)...(𝑀 + 1)) ∩ dom 𝑈)) = (𝑈 ↾ (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑀)))) |
257 | | f1orel 6486 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑈:(1...𝑀)–1-1-onto→(1...𝑀) → Rel 𝑈) |
258 | | resindm 5781 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (Rel
𝑈 → (𝑈 ↾ (((𝑗 + 1)...(𝑀 + 1)) ∩ dom 𝑈)) = (𝑈 ↾ ((𝑗 + 1)...(𝑀 + 1)))) |
259 | 11, 257, 258 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝑈 ↾ (((𝑗 + 1)...(𝑀 + 1)) ∩ dom 𝑈)) = (𝑈 ↾ ((𝑗 + 1)...(𝑀 + 1)))) |
260 | 256, 259 | eqtr3d 2833 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝑈 ↾ (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑀))) = (𝑈 ↾ ((𝑗 + 1)...(𝑀 + 1)))) |
261 | 34 | ineq2d 4109 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ (0...𝑀) → (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑀)) = (((𝑗 + 1)...(𝑀 + 1)) ∩ ((1...𝑗) ∪ ((𝑗 + 1)...𝑀)))) |
262 | | fzssp1 12800 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑗 + 1)...𝑀) ⊆ ((𝑗 + 1)...(𝑀 + 1)) |
263 | | sseqin2 4112 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑗 + 1)...𝑀) ⊆ ((𝑗 + 1)...(𝑀 + 1)) ↔ (((𝑗 + 1)...(𝑀 + 1)) ∩ ((𝑗 + 1)...𝑀)) = ((𝑗 + 1)...𝑀)) |
264 | 262, 263 | mpbi 231 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑗 + 1)...(𝑀 + 1)) ∩ ((𝑗 + 1)...𝑀)) = ((𝑗 + 1)...𝑀) |
265 | 264 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑗 ∈ (0...𝑀) → (((𝑗 + 1)...(𝑀 + 1)) ∩ ((𝑗 + 1)...𝑀)) = ((𝑗 + 1)...𝑀)) |
266 | | incom 4099 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑗)) = ((1...𝑗) ∩ ((𝑗 + 1)...(𝑀 + 1))) |
267 | 266, 132 | syl5eq 2843 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑗 ∈ (0...𝑀) → (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑗)) = ∅) |
268 | 265, 267 | uneq12d 4061 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 ∈ (0...𝑀) → ((((𝑗 + 1)...(𝑀 + 1)) ∩ ((𝑗 + 1)...𝑀)) ∪ (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑗))) = (((𝑗 + 1)...𝑀) ∪ ∅)) |
269 | | uncom 4050 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑗 + 1)...(𝑀 + 1)) ∩ ((𝑗 + 1)...𝑀)) ∪ (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑗))) = ((((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑗)) ∪ (((𝑗 + 1)...(𝑀 + 1)) ∩ ((𝑗 + 1)...𝑀))) |
270 | | indi 4170 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑗 + 1)...(𝑀 + 1)) ∩ ((1...𝑗) ∪ ((𝑗 + 1)...𝑀))) = ((((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑗)) ∪ (((𝑗 + 1)...(𝑀 + 1)) ∩ ((𝑗 + 1)...𝑀))) |
271 | 269, 270 | eqtr4i 2822 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑗 + 1)...(𝑀 + 1)) ∩ ((𝑗 + 1)...𝑀)) ∪ (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑗))) = (((𝑗 + 1)...(𝑀 + 1)) ∩ ((1...𝑗) ∪ ((𝑗 + 1)...𝑀))) |
272 | | un0 4264 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑗 + 1)...𝑀) ∪ ∅) = ((𝑗 + 1)...𝑀) |
273 | 268, 271,
272 | 3eqtr3g 2854 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ (0...𝑀) → (((𝑗 + 1)...(𝑀 + 1)) ∩ ((1...𝑗) ∪ ((𝑗 + 1)...𝑀))) = ((𝑗 + 1)...𝑀)) |
274 | 261, 273 | eqtrd 2831 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ (0...𝑀) → (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑀)) = ((𝑗 + 1)...𝑀)) |
275 | 274 | reseq2d 5734 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (0...𝑀) → (𝑈 ↾ (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑀))) = (𝑈 ↾ ((𝑗 + 1)...𝑀))) |
276 | 260, 275 | sylan9req 2852 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑈 ↾ ((𝑗 + 1)...(𝑀 + 1))) = (𝑈 ↾ ((𝑗 + 1)...𝑀))) |
277 | 276 | rneqd 5690 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ran (𝑈 ↾ ((𝑗 + 1)...(𝑀 + 1))) = ran (𝑈 ↾ ((𝑗 + 1)...𝑀))) |
278 | | df-ima 5456 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) = ran (𝑈 ↾ ((𝑗 + 1)...(𝑀 + 1))) |
279 | | df-ima 5456 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑈 “ ((𝑗 + 1)...𝑀)) = ran (𝑈 ↾ ((𝑗 + 1)...𝑀)) |
280 | 277, 278,
279 | 3eqtr4g 2856 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) = (𝑈 “ ((𝑗 + 1)...𝑀))) |
281 | 280 | xpeq1d 5472 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) = ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})) |
282 | 281 | reseq1d 5733 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) = (((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ↾ (1...𝑀))) |
283 | | relxp 5461 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ Rel
((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) |
284 | | dmxpss 5904 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ dom
((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ⊆ (𝑈 “ ((𝑗 + 1)...𝑀)) |
285 | | imassrn 5817 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑈 “ ((𝑗 + 1)...𝑀)) ⊆ ran 𝑈 |
286 | 284, 285 | sstri 3898 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ dom
((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ⊆ ran 𝑈 |
287 | 286, 223 | syl5ss 3900 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → dom ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ⊆ (1...𝑀)) |
288 | | relssres 5774 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((Rel
((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ∧ dom ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ⊆ (1...𝑀)) → (((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ↾ (1...𝑀)) = ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})) |
289 | 283, 287,
288 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ↾ (1...𝑀)) = ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})) |
290 | 289 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ↾ (1...𝑀)) = ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})) |
291 | 282, 290 | eqtrd 2831 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) = ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})) |
292 | | imassrn 5817 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
({〈(𝑀 + 1),
(𝑀 + 1)〉} “
((𝑗 + 1)...(𝑀 + 1))) ⊆ ran
{〈(𝑀 + 1), (𝑀 + 1)〉} |
293 | 292, 229 | sseqtri 3924 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
({〈(𝑀 + 1),
(𝑀 + 1)〉} “
((𝑗 + 1)...(𝑀 + 1))) ⊆ {(𝑀 + 1)} |
294 | | ssrin 4130 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(({〈(𝑀 + 1),
(𝑀 + 1)〉} “
((𝑗 + 1)...(𝑀 + 1))) ⊆ {(𝑀 + 1)} → (({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) ∩ (1...𝑀)) ⊆ ({(𝑀 + 1)} ∩ (1...𝑀))) |
295 | 293, 294 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(({〈(𝑀 + 1),
(𝑀 + 1)〉} “
((𝑗 + 1)...(𝑀 + 1))) ∩ (1...𝑀)) ⊆ ({(𝑀 + 1)} ∩ (1...𝑀)) |
296 | 295, 234 | sseqtrid 3940 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) ∩ (1...𝑀)) ⊆ ∅) |
297 | | ss0 4272 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((({〈(𝑀 + 1),
(𝑀 + 1)〉} “
((𝑗 + 1)...(𝑀 + 1))) ∩ (1...𝑀)) ⊆ ∅ →
(({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) ∩ (1...𝑀)) = ∅) |
298 | 296, 297 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) ∩ (1...𝑀)) = ∅) |
299 | | fnconstg 6435 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (0 ∈
V → (({〈(𝑀 + 1),
(𝑀 + 1)〉} “
((𝑗 + 1)...(𝑀 + 1))) × {0}) Fn
({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1)))) |
300 | | fnresdisj 6337 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((({〈(𝑀 + 1),
(𝑀 + 1)〉} “
((𝑗 + 1)...(𝑀 + 1))) × {0}) Fn
({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) → ((({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) ∩ (1...𝑀)) = ∅ ↔ ((({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) = ∅)) |
301 | 7, 299, 300 | mp2b 10 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((({〈(𝑀 + 1),
(𝑀 + 1)〉} “
((𝑗 + 1)...(𝑀 + 1))) ∩ (1...𝑀)) = ∅ ↔
((({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) = ∅) |
302 | 298, 301 | sylib 219 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) = ∅) |
303 | 302 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) = ∅) |
304 | 291, 303 | uneq12d 4061 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) ∪ ((({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀))) = (((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ∪
∅)) |
305 | 193 | xpeq1i 5469 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) = (((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) ∪ ({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1)))) × {0}) |
306 | | xpundir 5507 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) ∪ ({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1)))) × {0}) = (((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ∪ (({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) |
307 | 305, 306 | eqtri 2819 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) = (((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ∪ (({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) |
308 | 307 | reseq1i 5730 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) = ((((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ∪ (({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) ↾ (1...𝑀)) |
309 | | resundir 5749 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ∪ (({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) ↾ (1...𝑀)) = ((((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) ∪ ((({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀))) |
310 | 308, 309 | eqtr2i 2820 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) ∪ ((({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀))) = ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) |
311 | | un0 4264 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ∪ ∅) = ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) |
312 | 304, 310,
311 | 3eqtr3g 2854 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) = ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})) |
313 | 252, 312 | uneq12d 4061 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ↾
(1...𝑀)) ∪ ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀))) = (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) |
314 | 216, 313 | syl5eq 2843 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) ↾ (1...𝑀)) = (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) |
315 | 314 | fveq1d 6540 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) ↾ (1...𝑀))‘𝑛) = ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛)) |
316 | 215, 315 | sylan9eqr 2853 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑛 ∈ (1...𝑀)) → (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛) = ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛)) |
317 | 213, 316 | oveq12d 7034 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑛 ∈ (1...𝑀)) → (((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) + (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛)) = ((𝑇‘𝑛) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛))) |
318 | 317 | mpteq2dva 5055 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑛 ∈ (1...𝑀) ↦ (((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) + (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛))) = (𝑛 ∈ (1...𝑀) ↦ ((𝑇‘𝑛) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛)))) |
319 | 318 | uneq1d 4059 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝑛 ∈ (1...𝑀) ↦ (((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) + (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛))) ∪ {〈(𝑀 + 1), 0〉}) = ((𝑛 ∈ (1...𝑀) ↦ ((𝑇‘𝑛) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛))) ∪ {〈(𝑀 + 1), 0〉})) |
320 | 158, 207,
319 | 3eqtr2d 2837 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘𝑓
+ ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) = ((𝑛 ∈ (1...𝑀) ↦ ((𝑇‘𝑛) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛))) ∪ {〈(𝑀 + 1), 0〉})) |
321 | 320 | uneq1d 4059 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘𝑓
+ ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) = (((𝑛 ∈ (1...𝑀) ↦ ((𝑇‘𝑛) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛))) ∪ {〈(𝑀 + 1), 0〉}) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0}))) |
322 | 83, 321 | eqtr4d 2834 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) = (((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘𝑓
+ ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0}))) |
323 | 322 | csbeq1d 3815 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ⦋((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 = ⦋(((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘𝑓
+ ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵) |
324 | 323 | eqeq2d 2805 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑖 = ⦋((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ 𝑖 = ⦋(((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘𝑓
+ ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
325 | 324 | rexbidva 3259 |
. . . . . 6
⊢ (𝜑 → (∃𝑗 ∈ (0...𝑀)𝑖 = ⦋((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘𝑓
+ ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
326 | 325 | ralbidv 3164 |
. . . . 5
⊢ (𝜑 → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘𝑓
+ ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
327 | 326 | biimpd 230 |
. . . 4
⊢ (𝜑 → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 → ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘𝑓
+ ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
328 | | f1ofn 6484 |
. . . . . . . 8
⊢ (𝑈:(1...𝑀)–1-1-onto→(1...𝑀) → 𝑈 Fn (1...𝑀)) |
329 | 11, 328 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑈 Fn (1...𝑀)) |
330 | 75, 75 | fnsn 6282 |
. . . . . . . . 9
⊢
{〈(𝑀 + 1),
(𝑀 + 1)〉} Fn {(𝑀 + 1)} |
331 | | fvun2 6622 |
. . . . . . . . 9
⊢ ((𝑈 Fn (1...𝑀) ∧ {〈(𝑀 + 1), (𝑀 + 1)〉} Fn {(𝑀 + 1)} ∧ (((1...𝑀) ∩ {(𝑀 + 1)}) = ∅ ∧ (𝑀 + 1) ∈ {(𝑀 + 1)})) → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})‘(𝑀 + 1)) = ({〈(𝑀 + 1), (𝑀 + 1)〉}‘(𝑀 + 1))) |
332 | 330, 331 | mp3an2 1441 |
. . . . . . . 8
⊢ ((𝑈 Fn (1...𝑀) ∧ (((1...𝑀) ∩ {(𝑀 + 1)}) = ∅ ∧ (𝑀 + 1) ∈ {(𝑀 + 1)})) → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})‘(𝑀 + 1)) = ({〈(𝑀 + 1), (𝑀 + 1)〉}‘(𝑀 + 1))) |
333 | 163, 332 | mpanr2 700 |
. . . . . . 7
⊢ ((𝑈 Fn (1...𝑀) ∧ ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅) → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})‘(𝑀 + 1)) = ({〈(𝑀 + 1), (𝑀 + 1)〉}‘(𝑀 + 1))) |
334 | 329, 92, 333 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})‘(𝑀 + 1)) = ({〈(𝑀 + 1), (𝑀 + 1)〉}‘(𝑀 + 1))) |
335 | 75, 75 | fvsn 6806 |
. . . . . 6
⊢
({〈(𝑀 + 1),
(𝑀 + 1)〉}‘(𝑀 + 1)) = (𝑀 + 1) |
336 | 334, 335 | syl6eq 2847 |
. . . . 5
⊢ (𝜑 → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})‘(𝑀 + 1)) = (𝑀 + 1)) |
337 | 170, 336 | jca 512 |
. . . 4
⊢ (𝜑 → (((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1)) = 0 ∧ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})‘(𝑀 + 1)) = (𝑀 + 1))) |
338 | 327, 337 | jctird 527 |
. . 3
⊢ (𝜑 → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘𝑓
+ ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ (((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1)) = 0 ∧ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})‘(𝑀 + 1)) = (𝑀 + 1))))) |
339 | | 3anass 1088 |
. . 3
⊢
((∀𝑖 ∈
(0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘𝑓
+ ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1)) = 0 ∧ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})‘(𝑀 + 1)) = (𝑀 + 1)) ↔ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘𝑓
+ ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ (((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1)) = 0 ∧ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})‘(𝑀 + 1)) = (𝑀 + 1)))) |
340 | 338, 339 | syl6ibr 253 |
. 2
⊢ (𝜑 → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘𝑓
+ ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1)) = 0 ∧ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})‘(𝑀 + 1)) = (𝑀 + 1)))) |
341 | 1, 95 | jctir 521 |
. . . . . 6
⊢ (𝜑 → (𝑇:(1...𝑀)⟶(0..^𝐾) ∧ {〈(𝑀 + 1), 0〉}:{(𝑀 + 1)}⟶{0})) |
342 | 341, 92, 96 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝑇 ∪ {〈(𝑀 + 1), 0〉}):((1...𝑀) ∪ {(𝑀 + 1)})⟶((0..^𝐾) ∪ {0})) |
343 | 342, 114 | mpbid 233 |
. . . 4
⊢ (𝜑 → (𝑇 ∪ {〈(𝑀 + 1), 0〉}):(1...(𝑀 + 1))⟶(0..^𝐾)) |
344 | | ovex 7048 |
. . . . 5
⊢
(0..^𝐾) ∈
V |
345 | | ovex 7048 |
. . . . 5
⊢
(1...(𝑀 + 1)) ∈
V |
346 | 344, 345 | elmap 8285 |
. . . 4
⊢ ((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∈ ((0..^𝐾) ↑𝑚
(1...(𝑀 + 1))) ↔
(𝑇 ∪ {〈(𝑀 + 1), 0〉}):(1...(𝑀 + 1))⟶(0..^𝐾)) |
347 | 343, 346 | sylibr 235 |
. . 3
⊢ (𝜑 → (𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∈ ((0..^𝐾) ↑𝑚
(1...(𝑀 +
1)))) |
348 | | ovex 7048 |
. . . . . . . 8
⊢
(1...𝑀) ∈
V |
349 | | f1oexrnex 7488 |
. . . . . . . 8
⊢ ((𝑈:(1...𝑀)–1-1-onto→(1...𝑀) ∧ (1...𝑀) ∈ V) → 𝑈 ∈ V) |
350 | 11, 348, 349 | sylancl 586 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ V) |
351 | | snex 5223 |
. . . . . . 7
⊢
{〈(𝑀 + 1),
(𝑀 + 1)〉} ∈
V |
352 | | unexg 7329 |
. . . . . . 7
⊢ ((𝑈 ∈ V ∧ {〈(𝑀 + 1), (𝑀 + 1)〉} ∈ V) → (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) ∈ V) |
353 | 350, 351,
352 | sylancl 586 |
. . . . . 6
⊢ (𝜑 → (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) ∈ V) |
354 | | f1oeq1 6472 |
. . . . . . 7
⊢ (𝑓 = (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) → (𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1)) ↔ (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1)))) |
355 | 354 | elabg 3604 |
. . . . . 6
⊢ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) ∈ V → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) ∈ {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))} ↔ (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1)))) |
356 | 353, 355 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) ∈ {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))} ↔ (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1)))) |
357 | | f1oeq23 6475 |
. . . . . 6
⊢
(((1...(𝑀 + 1)) =
((1...𝑀) ∪ {(𝑀 + 1)}) ∧ (1...(𝑀 + 1)) = ((1...𝑀) ∪ {(𝑀 + 1)})) → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1)) ↔ (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):((1...𝑀) ∪ {(𝑀 + 1)})–1-1-onto→((1...𝑀) ∪ {(𝑀 + 1)}))) |
358 | 106, 106,
357 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1)) ↔ (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):((1...𝑀) ∪ {(𝑀 + 1)})–1-1-onto→((1...𝑀) ∪ {(𝑀 + 1)}))) |
359 | 356, 358 | bitrd 280 |
. . . 4
⊢ (𝜑 → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) ∈ {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))} ↔ (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):((1...𝑀) ∪ {(𝑀 + 1)})–1-1-onto→((1...𝑀) ∪ {(𝑀 + 1)}))) |
360 | 126, 359 | mpbird 258 |
. . 3
⊢ (𝜑 → (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) ∈ {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) |
361 | | opelxpi 5480 |
. . 3
⊢ (((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∈ ((0..^𝐾) ↑𝑚
(1...(𝑀 + 1))) ∧ (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) ∈ {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) → 〈(𝑇 ∪ {〈(𝑀 + 1), 0〉}), (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})〉 ∈ (((0..^𝐾) ↑𝑚
(1...(𝑀 + 1))) ×
{𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) |
362 | 347, 360,
361 | syl2anc 584 |
. 2
⊢ (𝜑 → 〈(𝑇 ∪ {〈(𝑀 + 1), 0〉}), (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})〉 ∈ (((0..^𝐾) ↑𝑚
(1...(𝑀 + 1))) ×
{𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) |
363 | 340, 362 | jctild 526 |
1
⊢ (𝜑 → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 → (〈(𝑇 ∪ {〈(𝑀 + 1), 0〉}), (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})〉 ∈ (((0..^𝐾) ↑𝑚
(1...(𝑀 + 1))) ×
{𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∧ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘𝑓
+ ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1)) = 0 ∧ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})‘(𝑀 + 1)) = (𝑀 + 1))))) |