| Step | Hyp | Ref
| Expression |
| 1 | | poimirlem3.4 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑇:(1...𝑀)⟶(0..^𝐾)) |
| 2 | 1 | ffnd 6737 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑇 Fn (1...𝑀)) |
| 3 | 2 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → 𝑇 Fn (1...𝑀)) |
| 4 | | 1ex 11257 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
V |
| 5 | | fnconstg 6796 |
. . . . . . . . . . . . . . . . 17
⊢ (1 ∈
V → ((𝑈 “
(1...𝑗)) × {1}) Fn
(𝑈 “ (1...𝑗))) |
| 6 | 4, 5 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑈 “ (1...𝑗)) × {1}) Fn (𝑈 “ (1...𝑗)) |
| 7 | | c0ex 11255 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
V |
| 8 | | fnconstg 6796 |
. . . . . . . . . . . . . . . . 17
⊢ (0 ∈
V → ((𝑈 “
((𝑗 + 1)...𝑀)) × {0}) Fn (𝑈 “ ((𝑗 + 1)...𝑀))) |
| 9 | 7, 8 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) Fn (𝑈 “ ((𝑗 + 1)...𝑀)) |
| 10 | 6, 9 | pm3.2i 470 |
. . . . . . . . . . . . . . 15
⊢ (((𝑈 “ (1...𝑗)) × {1}) Fn (𝑈 “ (1...𝑗)) ∧ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) Fn (𝑈 “ ((𝑗 + 1)...𝑀))) |
| 11 | | poimirlem3.5 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑈:(1...𝑀)–1-1-onto→(1...𝑀)) |
| 12 | | dff1o3 6854 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑈:(1...𝑀)–1-1-onto→(1...𝑀) ↔ (𝑈:(1...𝑀)–onto→(1...𝑀) ∧ Fun ◡𝑈)) |
| 13 | 12 | simprbi 496 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑈:(1...𝑀)–1-1-onto→(1...𝑀) → Fun ◡𝑈) |
| 14 | | imain 6651 |
. . . . . . . . . . . . . . . . 17
⊢ (Fun
◡𝑈 → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑀))) = ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑀)))) |
| 15 | 11, 13, 14 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑀))) = ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑀)))) |
| 16 | | elfznn0 13660 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℕ0) |
| 17 | 16 | nn0red 12588 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ) |
| 18 | 17 | ltp1d 12198 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 < (𝑗 + 1)) |
| 19 | | fzdisj 13591 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 < (𝑗 + 1) → ((1...𝑗) ∩ ((𝑗 + 1)...𝑀)) = ∅) |
| 20 | 18, 19 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0...𝑀) → ((1...𝑗) ∩ ((𝑗 + 1)...𝑀)) = ∅) |
| 21 | 20 | imaeq2d 6078 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (0...𝑀) → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑀))) = (𝑈 “ ∅)) |
| 22 | | ima0 6095 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑈 “ ∅) =
∅ |
| 23 | 21, 22 | eqtrdi 2793 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (0...𝑀) → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑀))) = ∅) |
| 24 | 15, 23 | sylan9req 2798 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑀))) = ∅) |
| 25 | | fnun 6682 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑈 “
(1...𝑗)) × {1}) Fn
(𝑈 “ (1...𝑗)) ∧ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) Fn (𝑈 “ ((𝑗 + 1)...𝑀))) ∧ ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑀))) = ∅) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})) Fn ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑀)))) |
| 26 | 10, 24, 25 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})) Fn ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑀)))) |
| 27 | | imaundi 6169 |
. . . . . . . . . . . . . . . 16
⊢ (𝑈 “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑀))) = ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑀))) |
| 28 | | nn0p1nn 12565 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ ℕ0
→ (𝑗 + 1) ∈
ℕ) |
| 29 | | nnuz 12921 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ℕ =
(ℤ≥‘1) |
| 30 | 28, 29 | eleqtrdi 2851 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ ℕ0
→ (𝑗 + 1) ∈
(ℤ≥‘1)) |
| 31 | 16, 30 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0...𝑀) → (𝑗 + 1) ∈
(ℤ≥‘1)) |
| 32 | | elfzuz3 13561 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0...𝑀) → 𝑀 ∈ (ℤ≥‘𝑗)) |
| 33 | | fzsplit2 13589 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑗 + 1) ∈
(ℤ≥‘1) ∧ 𝑀 ∈ (ℤ≥‘𝑗)) → (1...𝑀) = ((1...𝑗) ∪ ((𝑗 + 1)...𝑀))) |
| 34 | 31, 32, 33 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (0...𝑀) → (1...𝑀) = ((1...𝑗) ∪ ((𝑗 + 1)...𝑀))) |
| 35 | 34 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0...𝑀) → ((1...𝑗) ∪ ((𝑗 + 1)...𝑀)) = (1...𝑀)) |
| 36 | 35 | imaeq2d 6078 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (0...𝑀) → (𝑈 “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑀))) = (𝑈 “ (1...𝑀))) |
| 37 | | f1ofo 6855 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑈:(1...𝑀)–1-1-onto→(1...𝑀) → 𝑈:(1...𝑀)–onto→(1...𝑀)) |
| 38 | | foima 6825 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑈:(1...𝑀)–onto→(1...𝑀) → (𝑈 “ (1...𝑀)) = (1...𝑀)) |
| 39 | 11, 37, 38 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑈 “ (1...𝑀)) = (1...𝑀)) |
| 40 | 36, 39 | sylan9eqr 2799 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑈 “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑀))) = (1...𝑀)) |
| 41 | 27, 40 | eqtr3id 2791 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑀))) = (1...𝑀)) |
| 42 | 41 | fneq2d 6662 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})) Fn ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑀))) ↔ (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})) Fn (1...𝑀))) |
| 43 | 26, 42 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})) Fn (1...𝑀)) |
| 44 | | ovexd 7466 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (1...𝑀) ∈ V) |
| 45 | | inidm 4227 |
. . . . . . . . . . . . 13
⊢
((1...𝑀) ∩
(1...𝑀)) = (1...𝑀) |
| 46 | | eqidd 2738 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑛 ∈ (1...𝑀)) → (𝑇‘𝑛) = (𝑇‘𝑛)) |
| 47 | | eqidd 2738 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑛 ∈ (1...𝑀)) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛) = ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛)) |
| 48 | 3, 43, 44, 44, 45, 46, 47 | offval 7706 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) = (𝑛 ∈ (1...𝑀) ↦ ((𝑇‘𝑛) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛)))) |
| 49 | | poimirlem4.2 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 50 | | nn0p1nn 12565 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑀 ∈ ℕ0
→ (𝑀 + 1) ∈
ℕ) |
| 51 | 49, 50 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑀 + 1) ∈ ℕ) |
| 52 | 51 | nnzd 12640 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑀 + 1) ∈ ℤ) |
| 53 | | uzid 12893 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 + 1) ∈ ℤ →
(𝑀 + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
| 54 | | peano2uz 12943 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 + 1) ∈
(ℤ≥‘(𝑀 + 1)) → ((𝑀 + 1) + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
| 55 | 52, 53, 54 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑀 + 1) + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
| 56 | | poimirlem4.3 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑀 < 𝑁) |
| 57 | 49 | nn0zd 12639 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 58 | | poimir.0 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 59 | 58 | nnzd 12640 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 60 | | zltp1le 12667 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
| 61 | | peano2z 12658 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑀 ∈ ℤ → (𝑀 + 1) ∈
ℤ) |
| 62 | | eluz 12892 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈
(ℤ≥‘(𝑀 + 1)) ↔ (𝑀 + 1) ≤ 𝑁)) |
| 63 | 61, 62 | sylan 580 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈
(ℤ≥‘(𝑀 + 1)) ↔ (𝑀 + 1) ≤ 𝑁)) |
| 64 | 60, 63 | bitr4d 282 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) |
| 65 | 57, 59, 64 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑀 < 𝑁 ↔ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) |
| 66 | 56, 65 | mpbid 232 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) |
| 67 | | fzsplit2 13589 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑀 + 1) + 1) ∈
(ℤ≥‘(𝑀 + 1)) ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → ((𝑀 + 1)...𝑁) = (((𝑀 + 1)...(𝑀 + 1)) ∪ (((𝑀 + 1) + 1)...𝑁))) |
| 68 | 55, 66, 67 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑀 + 1)...𝑁) = (((𝑀 + 1)...(𝑀 + 1)) ∪ (((𝑀 + 1) + 1)...𝑁))) |
| 69 | | fzsn 13606 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 + 1) ∈ ℤ →
((𝑀 + 1)...(𝑀 + 1)) = {(𝑀 + 1)}) |
| 70 | 52, 69 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑀 + 1)...(𝑀 + 1)) = {(𝑀 + 1)}) |
| 71 | 70 | uneq1d 4167 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (((𝑀 + 1)...(𝑀 + 1)) ∪ (((𝑀 + 1) + 1)...𝑁)) = ({(𝑀 + 1)} ∪ (((𝑀 + 1) + 1)...𝑁))) |
| 72 | 68, 71 | eqtrd 2777 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑀 + 1)...𝑁) = ({(𝑀 + 1)} ∪ (((𝑀 + 1) + 1)...𝑁))) |
| 73 | 72 | xpeq1d 5714 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((𝑀 + 1)...𝑁) × {0}) = (({(𝑀 + 1)} ∪ (((𝑀 + 1) + 1)...𝑁)) × {0})) |
| 74 | | xpundir 5755 |
. . . . . . . . . . . . . . 15
⊢ (({(𝑀 + 1)} ∪ (((𝑀 + 1) + 1)...𝑁)) × {0}) = (({(𝑀 + 1)} × {0}) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) |
| 75 | | ovex 7464 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 + 1) ∈ V |
| 76 | 75, 7 | xpsn 7161 |
. . . . . . . . . . . . . . . 16
⊢ ({(𝑀 + 1)} × {0}) =
{〈(𝑀 + 1),
0〉} |
| 77 | 76 | uneq1i 4164 |
. . . . . . . . . . . . . . 15
⊢ (({(𝑀 + 1)} × {0}) ∪
((((𝑀 + 1) + 1)...𝑁) × {0})) = ({〈(𝑀 + 1), 0〉} ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) |
| 78 | 74, 77 | eqtri 2765 |
. . . . . . . . . . . . . 14
⊢ (({(𝑀 + 1)} ∪ (((𝑀 + 1) + 1)...𝑁)) × {0}) = ({〈(𝑀 + 1), 0〉} ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) |
| 79 | 73, 78 | eqtrdi 2793 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((𝑀 + 1)...𝑁) × {0}) = ({〈(𝑀 + 1), 0〉} ∪ ((((𝑀 + 1) + 1)...𝑁) × {0}))) |
| 80 | 79 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((𝑀 + 1)...𝑁) × {0}) = ({〈(𝑀 + 1), 0〉} ∪ ((((𝑀 + 1) + 1)...𝑁) × {0}))) |
| 81 | 48, 80 | uneq12d 4169 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) = ((𝑛 ∈ (1...𝑀) ↦ ((𝑇‘𝑛) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛))) ∪ ({〈(𝑀 + 1), 0〉} ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})))) |
| 82 | | unass 4172 |
. . . . . . . . . . 11
⊢ (((𝑛 ∈ (1...𝑀) ↦ ((𝑇‘𝑛) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛))) ∪ {〈(𝑀 + 1), 0〉}) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) = ((𝑛 ∈ (1...𝑀) ↦ ((𝑇‘𝑛) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛))) ∪ ({〈(𝑀 + 1), 0〉} ∪ ((((𝑀 + 1) + 1)...𝑁) × {0}))) |
| 83 | 81, 82 | eqtr4di 2795 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) = (((𝑛 ∈ (1...𝑀) ↦ ((𝑇‘𝑛) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛))) ∪ {〈(𝑀 + 1), 0〉}) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0}))) |
| 84 | 49 | nn0red 12588 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 85 | 84 | ltp1d 12198 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑀 < (𝑀 + 1)) |
| 86 | 51 | nnred 12281 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑀 + 1) ∈ ℝ) |
| 87 | 84, 86 | ltnled 11408 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑀 < (𝑀 + 1) ↔ ¬ (𝑀 + 1) ≤ 𝑀)) |
| 88 | 85, 87 | mpbid 232 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ¬ (𝑀 + 1) ≤ 𝑀) |
| 89 | | elfzle2 13568 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 + 1) ∈ (1...𝑀) → (𝑀 + 1) ≤ 𝑀) |
| 90 | 88, 89 | nsyl 140 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ¬ (𝑀 + 1) ∈ (1...𝑀)) |
| 91 | | disjsn 4711 |
. . . . . . . . . . . . . . . . . 18
⊢
(((1...𝑀) ∩
{(𝑀 + 1)}) = ∅ ↔
¬ (𝑀 + 1) ∈
(1...𝑀)) |
| 92 | 90, 91 | sylibr 234 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅) |
| 93 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . 19
⊢
{〈(𝑀 + 1),
0〉} = {〈(𝑀 + 1),
0〉} |
| 94 | 75, 7 | fsn 7155 |
. . . . . . . . . . . . . . . . . . 19
⊢
({〈(𝑀 + 1),
0〉}:{(𝑀 +
1)}⟶{0} ↔ {〈(𝑀 + 1), 0〉} = {〈(𝑀 + 1), 0〉}) |
| 95 | 93, 94 | mpbir 231 |
. . . . . . . . . . . . . . . . . 18
⊢
{〈(𝑀 + 1),
0〉}:{(𝑀 +
1)}⟶{0} |
| 96 | | fun 6770 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑇:(1...𝑀)⟶(0..^𝐾) ∧ {〈(𝑀 + 1), 0〉}:{(𝑀 + 1)}⟶{0}) ∧ ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅) → (𝑇 ∪ {〈(𝑀 + 1), 0〉}):((1...𝑀) ∪ {(𝑀 + 1)})⟶((0..^𝐾) ∪ {0})) |
| 97 | 95, 96 | mpanl2 701 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑇:(1...𝑀)⟶(0..^𝐾) ∧ ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅) → (𝑇 ∪ {〈(𝑀 + 1), 0〉}):((1...𝑀) ∪ {(𝑀 + 1)})⟶((0..^𝐾) ∪ {0})) |
| 98 | 1, 92, 97 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑇 ∪ {〈(𝑀 + 1), 0〉}):((1...𝑀) ∪ {(𝑀 + 1)})⟶((0..^𝐾) ∪ {0})) |
| 99 | | 1z 12647 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℤ |
| 100 | | nn0uz 12920 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
ℕ0 = (ℤ≥‘0) |
| 101 | | 1m1e0 12338 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (1
− 1) = 0 |
| 102 | 101 | fveq2i 6909 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(ℤ≥‘(1 − 1)) =
(ℤ≥‘0) |
| 103 | 100, 102 | eqtr4i 2768 |
. . . . . . . . . . . . . . . . . . . 20
⊢
ℕ0 = (ℤ≥‘(1 −
1)) |
| 104 | 49, 103 | eleqtrdi 2851 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘(1
− 1))) |
| 105 | | fzsuc2 13622 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((1
∈ ℤ ∧ 𝑀
∈ (ℤ≥‘(1 − 1))) → (1...(𝑀 + 1)) = ((1...𝑀) ∪ {(𝑀 + 1)})) |
| 106 | 99, 104, 105 | sylancr 587 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (1...(𝑀 + 1)) = ((1...𝑀) ∪ {(𝑀 + 1)})) |
| 107 | 106 | eqcomd 2743 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((1...𝑀) ∪ {(𝑀 + 1)}) = (1...(𝑀 + 1))) |
| 108 | | poimirlem4.1 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐾 ∈ ℕ) |
| 109 | | lbfzo0 13739 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0 ∈
(0..^𝐾) ↔ 𝐾 ∈
ℕ) |
| 110 | 108, 109 | sylibr 234 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 0 ∈ (0..^𝐾)) |
| 111 | 110 | snssd 4809 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → {0} ⊆ (0..^𝐾)) |
| 112 | | ssequn2 4189 |
. . . . . . . . . . . . . . . . . 18
⊢ ({0}
⊆ (0..^𝐾) ↔
((0..^𝐾) ∪ {0}) =
(0..^𝐾)) |
| 113 | 111, 112 | sylib 218 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((0..^𝐾) ∪ {0}) = (0..^𝐾)) |
| 114 | 107, 113 | feq23d 6731 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑇 ∪ {〈(𝑀 + 1), 0〉}):((1...𝑀) ∪ {(𝑀 + 1)})⟶((0..^𝐾) ∪ {0}) ↔ (𝑇 ∪ {〈(𝑀 + 1), 0〉}):(1...(𝑀 + 1))⟶(0..^𝐾))) |
| 115 | 98, 114 | mpbid 232 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑇 ∪ {〈(𝑀 + 1), 0〉}):(1...(𝑀 + 1))⟶(0..^𝐾)) |
| 116 | 115 | ffnd 6737 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑇 ∪ {〈(𝑀 + 1), 0〉}) Fn (1...(𝑀 + 1))) |
| 117 | 116 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑇 ∪ {〈(𝑀 + 1), 0〉}) Fn (1...(𝑀 + 1))) |
| 118 | | fnconstg 6796 |
. . . . . . . . . . . . . . . . 17
⊢ (1 ∈
V → (((𝑈 ∪
{〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) Fn ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗))) |
| 119 | 4, 118 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) Fn ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) |
| 120 | | fnconstg 6796 |
. . . . . . . . . . . . . . . . 17
⊢ (0 ∈
V → (((𝑈 ∪
{〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) Fn ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1)))) |
| 121 | 7, 120 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) Fn ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) |
| 122 | 119, 121 | pm3.2i 470 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) Fn ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) ∧ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) Fn ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1)))) |
| 123 | 75, 75 | f1osn 6888 |
. . . . . . . . . . . . . . . . . . 19
⊢
{〈(𝑀 + 1),
(𝑀 + 1)〉}:{(𝑀 + 1)}–1-1-onto→{(𝑀 + 1)} |
| 124 | | f1oun 6867 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑈:(1...𝑀)–1-1-onto→(1...𝑀) ∧ {〈(𝑀 + 1), (𝑀 + 1)〉}:{(𝑀 + 1)}–1-1-onto→{(𝑀 + 1)}) ∧ (((1...𝑀) ∩ {(𝑀 + 1)}) = ∅ ∧ ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅)) → (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):((1...𝑀) ∪ {(𝑀 + 1)})–1-1-onto→((1...𝑀) ∪ {(𝑀 + 1)})) |
| 125 | 123, 124 | mpanl2 701 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑈:(1...𝑀)–1-1-onto→(1...𝑀) ∧ (((1...𝑀) ∩ {(𝑀 + 1)}) = ∅ ∧ ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅)) → (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):((1...𝑀) ∪ {(𝑀 + 1)})–1-1-onto→((1...𝑀) ∪ {(𝑀 + 1)})) |
| 126 | 11, 92, 92, 125 | syl12anc 837 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):((1...𝑀) ∪ {(𝑀 + 1)})–1-1-onto→((1...𝑀) ∪ {(𝑀 + 1)})) |
| 127 | | dff1o3 6854 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):((1...𝑀) ∪ {(𝑀 + 1)})–1-1-onto→((1...𝑀) ∪ {(𝑀 + 1)}) ↔ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):((1...𝑀) ∪ {(𝑀 + 1)})–onto→((1...𝑀) ∪ {(𝑀 + 1)}) ∧ Fun ◡(𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}))) |
| 128 | 127 | simprbi 496 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):((1...𝑀) ∪ {(𝑀 + 1)})–1-1-onto→((1...𝑀) ∪ {(𝑀 + 1)}) → Fun ◡(𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})) |
| 129 | | imain 6651 |
. . . . . . . . . . . . . . . . 17
⊢ (Fun
◡(𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((1...𝑗) ∩ ((𝑗 + 1)...(𝑀 + 1)))) = (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) ∩ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))))) |
| 130 | 126, 128,
129 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((1...𝑗) ∩ ((𝑗 + 1)...(𝑀 + 1)))) = (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) ∩ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))))) |
| 131 | | fzdisj 13591 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 < (𝑗 + 1) → ((1...𝑗) ∩ ((𝑗 + 1)...(𝑀 + 1))) = ∅) |
| 132 | 18, 131 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0...𝑀) → ((1...𝑗) ∩ ((𝑗 + 1)...(𝑀 + 1))) = ∅) |
| 133 | 132 | imaeq2d 6078 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (0...𝑀) → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((1...𝑗) ∩ ((𝑗 + 1)...(𝑀 + 1)))) = ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “
∅)) |
| 134 | | ima0 6095 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ∅) =
∅ |
| 135 | 133, 134 | eqtrdi 2793 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (0...𝑀) → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((1...𝑗) ∩ ((𝑗 + 1)...(𝑀 + 1)))) = ∅) |
| 136 | 130, 135 | sylan9req 2798 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) ∩ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1)))) = ∅) |
| 137 | | fnun 6682 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑈 ∪
{〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) Fn ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) ∧ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) Fn ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1)))) ∧ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) ∩ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1)))) = ∅) → ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) Fn (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) ∪ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))))) |
| 138 | 122, 136,
137 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) Fn (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) ∪ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))))) |
| 139 | | f1ofo 6855 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):((1...𝑀) ∪ {(𝑀 + 1)})–1-1-onto→((1...𝑀) ∪ {(𝑀 + 1)}) → (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):((1...𝑀) ∪ {(𝑀 + 1)})–onto→((1...𝑀) ∪ {(𝑀 + 1)})) |
| 140 | | foima 6825 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):((1...𝑀) ∪ {(𝑀 + 1)})–onto→((1...𝑀) ∪ {(𝑀 + 1)}) → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((1...𝑀) ∪ {(𝑀 + 1)})) = ((1...𝑀) ∪ {(𝑀 + 1)})) |
| 141 | 126, 139,
140 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((1...𝑀) ∪ {(𝑀 + 1)})) = ((1...𝑀) ∪ {(𝑀 + 1)})) |
| 142 | 106 | imaeq2d 6078 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...(𝑀 + 1))) = ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((1...𝑀) ∪ {(𝑀 + 1)}))) |
| 143 | 141, 142,
106 | 3eqtr4d 2787 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...(𝑀 + 1))) = (1...(𝑀 + 1))) |
| 144 | | peano2uz 12943 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑀 ∈
(ℤ≥‘𝑗) → (𝑀 + 1) ∈
(ℤ≥‘𝑗)) |
| 145 | 32, 144 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (0...𝑀) → (𝑀 + 1) ∈
(ℤ≥‘𝑗)) |
| 146 | | fzsplit2 13589 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑗 + 1) ∈
(ℤ≥‘1) ∧ (𝑀 + 1) ∈
(ℤ≥‘𝑗)) → (1...(𝑀 + 1)) = ((1...𝑗) ∪ ((𝑗 + 1)...(𝑀 + 1)))) |
| 147 | 31, 145, 146 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0...𝑀) → (1...(𝑀 + 1)) = ((1...𝑗) ∪ ((𝑗 + 1)...(𝑀 + 1)))) |
| 148 | 147 | imaeq2d 6078 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (0...𝑀) → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...(𝑀 + 1))) = ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((1...𝑗) ∪ ((𝑗 + 1)...(𝑀 + 1))))) |
| 149 | 143, 148 | sylan9req 2798 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (1...(𝑀 + 1)) = ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((1...𝑗) ∪ ((𝑗 + 1)...(𝑀 + 1))))) |
| 150 | | imaundi 6169 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((1...𝑗) ∪ ((𝑗 + 1)...(𝑀 + 1)))) = (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) ∪ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1)))) |
| 151 | 149, 150 | eqtrdi 2793 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (1...(𝑀 + 1)) = (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) ∪ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))))) |
| 152 | 151 | fneq2d 6662 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) Fn (1...(𝑀 + 1)) ↔ ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) Fn (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) ∪ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1)))))) |
| 153 | 138, 152 | mpbird 257 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) Fn (1...(𝑀 + 1))) |
| 154 | | ovexd 7466 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (1...(𝑀 + 1)) ∈ V) |
| 155 | | inidm 4227 |
. . . . . . . . . . . . 13
⊢
((1...(𝑀 + 1)) ∩
(1...(𝑀 + 1))) =
(1...(𝑀 +
1)) |
| 156 | | eqidd 2738 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑛 ∈ (1...(𝑀 + 1))) → ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) = ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛)) |
| 157 | | eqidd 2738 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑛 ∈ (1...(𝑀 + 1))) → (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛) = (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛)) |
| 158 | 117, 153,
154, 154, 155, 156, 157 | offval 7706 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘f +
((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) = (𝑛 ∈ (1...(𝑀 + 1)) ↦ (((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) + (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛)))) |
| 159 | | imadmrn 6088 |
. . . . . . . . . . . . . . . . . . 19
⊢ (({(𝑀 + 1)} × {(𝑀 + 1)}) “ dom ({(𝑀 + 1)} × {(𝑀 + 1)})) = ran ({(𝑀 + 1)} × {(𝑀 + 1)}) |
| 160 | 75, 75 | xpsn 7161 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({(𝑀 + 1)} × {(𝑀 + 1)}) = {〈(𝑀 + 1), (𝑀 + 1)〉} |
| 161 | 160 | imaeq1i 6075 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (({(𝑀 + 1)} × {(𝑀 + 1)}) “ dom ({(𝑀 + 1)} × {(𝑀 + 1)})) = ({〈(𝑀 + 1), (𝑀 + 1)〉} “ dom ({(𝑀 + 1)} × {(𝑀 + 1)})) |
| 162 | | dmxpid 5941 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ dom
({(𝑀 + 1)} × {(𝑀 + 1)}) = {(𝑀 + 1)} |
| 163 | 162 | imaeq2i 6076 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈(𝑀 + 1),
(𝑀 + 1)〉} “ dom
({(𝑀 + 1)} × {(𝑀 + 1)})) = ({〈(𝑀 + 1), (𝑀 + 1)〉} “ {(𝑀 + 1)}) |
| 164 | 161, 163 | eqtri 2765 |
. . . . . . . . . . . . . . . . . . 19
⊢ (({(𝑀 + 1)} × {(𝑀 + 1)}) “ dom ({(𝑀 + 1)} × {(𝑀 + 1)})) = ({〈(𝑀 + 1), (𝑀 + 1)〉} “ {(𝑀 + 1)}) |
| 165 | | rnxpid 6193 |
. . . . . . . . . . . . . . . . . . 19
⊢ ran
({(𝑀 + 1)} × {(𝑀 + 1)}) = {(𝑀 + 1)} |
| 166 | 159, 164,
165 | 3eqtr3ri 2774 |
. . . . . . . . . . . . . . . . . 18
⊢ {(𝑀 + 1)} = ({〈(𝑀 + 1), (𝑀 + 1)〉} “ {(𝑀 + 1)}) |
| 167 | | eluzp1p1 12906 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑀 ∈
(ℤ≥‘𝑗) → (𝑀 + 1) ∈
(ℤ≥‘(𝑗 + 1))) |
| 168 | | eluzfz2 13572 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑀 + 1) ∈
(ℤ≥‘(𝑗 + 1)) → (𝑀 + 1) ∈ ((𝑗 + 1)...(𝑀 + 1))) |
| 169 | 32, 167, 168 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0...𝑀) → (𝑀 + 1) ∈ ((𝑗 + 1)...(𝑀 + 1))) |
| 170 | 169 | snssd 4809 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (0...𝑀) → {(𝑀 + 1)} ⊆ ((𝑗 + 1)...(𝑀 + 1))) |
| 171 | | imass2 6120 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({(𝑀 + 1)} ⊆ ((𝑗 + 1)...(𝑀 + 1)) → ({〈(𝑀 + 1), (𝑀 + 1)〉} “ {(𝑀 + 1)}) ⊆ ({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1)))) |
| 172 | 170, 171 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0...𝑀) → ({〈(𝑀 + 1), (𝑀 + 1)〉} “ {(𝑀 + 1)}) ⊆ ({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1)))) |
| 173 | 166, 172 | eqsstrid 4022 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (0...𝑀) → {(𝑀 + 1)} ⊆ ({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1)))) |
| 174 | 75 | snid 4662 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 + 1) ∈ {(𝑀 + 1)} |
| 175 | | ssel 3977 |
. . . . . . . . . . . . . . . . 17
⊢ ({(𝑀 + 1)} ⊆ ({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) → ((𝑀 + 1) ∈ {(𝑀 + 1)} → (𝑀 + 1) ∈ ({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))))) |
| 176 | 173, 174,
175 | mpisyl 21 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (0...𝑀) → (𝑀 + 1) ∈ ({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1)))) |
| 177 | | elun2 4183 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀 + 1) ∈ ({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) → (𝑀 + 1) ∈ ((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) ∪ ({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))))) |
| 178 | 176, 177 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (0...𝑀) → (𝑀 + 1) ∈ ((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) ∪ ({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))))) |
| 179 | | imaundir 6170 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) = ((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) ∪ ({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1)))) |
| 180 | 178, 179 | eleqtrrdi 2852 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (0...𝑀) → (𝑀 + 1) ∈ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1)))) |
| 181 | 180 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑀 + 1) ∈ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1)))) |
| 182 | 7 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → 0 ∈ V) |
| 183 | 107 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((1...𝑀) ∪ {(𝑀 + 1)}) = (1...(𝑀 + 1))) |
| 184 | | fveq2 6906 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = (𝑀 + 1) → ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) = ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1))) |
| 185 | 75, 7 | fnsn 6624 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
{〈(𝑀 + 1),
0〉} Fn {(𝑀 +
1)} |
| 186 | | fvun2 7001 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑇 Fn (1...𝑀) ∧ {〈(𝑀 + 1), 0〉} Fn {(𝑀 + 1)} ∧ (((1...𝑀) ∩ {(𝑀 + 1)}) = ∅ ∧ (𝑀 + 1) ∈ {(𝑀 + 1)})) → ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1)) = ({〈(𝑀 + 1), 0〉}‘(𝑀 + 1))) |
| 187 | 185, 186 | mp3an2 1451 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑇 Fn (1...𝑀) ∧ (((1...𝑀) ∩ {(𝑀 + 1)}) = ∅ ∧ (𝑀 + 1) ∈ {(𝑀 + 1)})) → ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1)) = ({〈(𝑀 + 1), 0〉}‘(𝑀 + 1))) |
| 188 | 174, 187 | mpanr2 704 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑇 Fn (1...𝑀) ∧ ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅) → ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1)) = ({〈(𝑀 + 1), 0〉}‘(𝑀 + 1))) |
| 189 | 2, 92, 188 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1)) = ({〈(𝑀 + 1), 0〉}‘(𝑀 + 1))) |
| 190 | 75, 7 | fvsn 7201 |
. . . . . . . . . . . . . . . . . 18
⊢
({〈(𝑀 + 1),
0〉}‘(𝑀 + 1)) =
0 |
| 191 | 189, 190 | eqtrdi 2793 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1)) = 0) |
| 192 | 184, 191 | sylan9eqr 2799 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 = (𝑀 + 1)) → ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) = 0) |
| 193 | 192 | adantlr 715 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑛 = (𝑀 + 1)) → ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) = 0) |
| 194 | | fveq2 6906 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑀 + 1) → (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛) = (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘(𝑀 + 1))) |
| 195 | | fvun2 7001 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑈 ∪
{〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) Fn ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) ∧ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) Fn ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) ∧ ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) ∩ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1)))) = ∅ ∧ (𝑀 + 1) ∈ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))))) → (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘(𝑀 + 1)) = ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})‘(𝑀 + 1))) |
| 196 | 119, 121,
195 | mp3an12 1453 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑈 ∪
{〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) ∩ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1)))) = ∅ ∧ (𝑀 + 1) ∈ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1)))) → (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘(𝑀 + 1)) = ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})‘(𝑀 + 1))) |
| 197 | 136, 181,
196 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘(𝑀 + 1)) = ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})‘(𝑀 + 1))) |
| 198 | 7 | fvconst2 7224 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 + 1) ∈ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) → ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})‘(𝑀 + 1)) = 0) |
| 199 | 180, 198 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0...𝑀) → ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})‘(𝑀 + 1)) = 0) |
| 200 | 199 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})‘(𝑀 + 1)) = 0) |
| 201 | 197, 200 | eqtrd 2777 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘(𝑀 + 1)) = 0) |
| 202 | 194, 201 | sylan9eqr 2799 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑛 = (𝑀 + 1)) → (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛) = 0) |
| 203 | 193, 202 | oveq12d 7449 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑛 = (𝑀 + 1)) → (((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) + (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛)) = (0 + 0)) |
| 204 | | 00id 11436 |
. . . . . . . . . . . . . 14
⊢ (0 + 0) =
0 |
| 205 | 203, 204 | eqtrdi 2793 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑛 = (𝑀 + 1)) → (((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) + (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛)) = 0) |
| 206 | 181, 182,
183, 205 | fmptapd 7191 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝑛 ∈ (1...𝑀) ↦ (((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) + (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛))) ∪ {〈(𝑀 + 1), 0〉}) = (𝑛 ∈ (1...(𝑀 + 1)) ↦ (((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) + (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛)))) |
| 207 | 2, 92 | jca 511 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑇 Fn (1...𝑀) ∧ ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅)) |
| 208 | | fvun1 7000 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑇 Fn (1...𝑀) ∧ {〈(𝑀 + 1), 0〉} Fn {(𝑀 + 1)} ∧ (((1...𝑀) ∩ {(𝑀 + 1)}) = ∅ ∧ 𝑛 ∈ (1...𝑀))) → ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) = (𝑇‘𝑛)) |
| 209 | 185, 208 | mp3an2 1451 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑇 Fn (1...𝑀) ∧ (((1...𝑀) ∩ {(𝑀 + 1)}) = ∅ ∧ 𝑛 ∈ (1...𝑀))) → ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) = (𝑇‘𝑛)) |
| 210 | 209 | anassrs 467 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑇 Fn (1...𝑀) ∧ ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅) ∧ 𝑛 ∈ (1...𝑀)) → ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) = (𝑇‘𝑛)) |
| 211 | 207, 210 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) = (𝑇‘𝑛)) |
| 212 | 211 | adantlr 715 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑛 ∈ (1...𝑀)) → ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) = (𝑇‘𝑛)) |
| 213 | | fvres 6925 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ (1...𝑀) → ((((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) ↾ (1...𝑀))‘𝑛) = (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛)) |
| 214 | 213 | eqcomd 2743 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ (1...𝑀) → (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛) = ((((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) ↾ (1...𝑀))‘𝑛)) |
| 215 | | resundir 6012 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑈 ∪
{〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) ↾ (1...𝑀)) = (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ↾
(1...𝑀)) ∪ ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀))) |
| 216 | | relxp 5703 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ Rel
((𝑈 “ (1...𝑗)) × {1}) |
| 217 | | dmxpss 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ dom
((𝑈 “ (1...𝑗)) × {1}) ⊆ (𝑈 “ (1...𝑗)) |
| 218 | | imassrn 6089 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑈 “ (1...𝑗)) ⊆ ran 𝑈 |
| 219 | 217, 218 | sstri 3993 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ dom
((𝑈 “ (1...𝑗)) × {1}) ⊆ ran
𝑈 |
| 220 | | f1of 6848 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑈:(1...𝑀)–1-1-onto→(1...𝑀) → 𝑈:(1...𝑀)⟶(1...𝑀)) |
| 221 | | frn 6743 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑈:(1...𝑀)⟶(1...𝑀) → ran 𝑈 ⊆ (1...𝑀)) |
| 222 | 11, 220, 221 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ran 𝑈 ⊆ (1...𝑀)) |
| 223 | 219, 222 | sstrid 3995 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → dom ((𝑈 “ (1...𝑗)) × {1}) ⊆ (1...𝑀)) |
| 224 | | relssres 6040 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((Rel
((𝑈 “ (1...𝑗)) × {1}) ∧ dom
((𝑈 “ (1...𝑗)) × {1}) ⊆
(1...𝑀)) → (((𝑈 “ (1...𝑗)) × {1}) ↾ (1...𝑀)) = ((𝑈 “ (1...𝑗)) × {1})) |
| 225 | 216, 223,
224 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (((𝑈 “ (1...𝑗)) × {1}) ↾ (1...𝑀)) = ((𝑈 “ (1...𝑗)) × {1})) |
| 226 | 225 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((𝑈 “ (1...𝑗)) × {1}) ↾ (1...𝑀)) = ((𝑈 “ (1...𝑗)) × {1})) |
| 227 | | imassrn 6089 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
({〈(𝑀 + 1),
(𝑀 + 1)〉} “
(1...𝑗)) ⊆ ran
{〈(𝑀 + 1), (𝑀 + 1)〉} |
| 228 | 75 | rnsnop 6244 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ran
{〈(𝑀 + 1), (𝑀 + 1)〉} = {(𝑀 + 1)} |
| 229 | 227, 228 | sseqtri 4032 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
({〈(𝑀 + 1),
(𝑀 + 1)〉} “
(1...𝑗)) ⊆ {(𝑀 + 1)} |
| 230 | | ssrin 4242 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(({〈(𝑀 + 1),
(𝑀 + 1)〉} “
(1...𝑗)) ⊆ {(𝑀 + 1)} → (({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) ∩ (1...𝑀)) ⊆ ({(𝑀 + 1)} ∩ (1...𝑀))) |
| 231 | 229, 230 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(({〈(𝑀 + 1),
(𝑀 + 1)〉} “
(1...𝑗)) ∩ (1...𝑀)) ⊆ ({(𝑀 + 1)} ∩ (1...𝑀)) |
| 232 | | incom 4209 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ({(𝑀 + 1)} ∩ (1...𝑀)) = ((1...𝑀) ∩ {(𝑀 + 1)}) |
| 233 | 232, 92 | eqtrid 2789 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → ({(𝑀 + 1)} ∩ (1...𝑀)) = ∅) |
| 234 | 231, 233 | sseqtrid 4026 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) ∩ (1...𝑀)) ⊆ ∅) |
| 235 | | ss0 4402 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((({〈(𝑀 + 1),
(𝑀 + 1)〉} “
(1...𝑗)) ∩ (1...𝑀)) ⊆ ∅ →
(({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) ∩ (1...𝑀)) = ∅) |
| 236 | 234, 235 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) ∩ (1...𝑀)) = ∅) |
| 237 | | fnconstg 6796 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (1 ∈
V → (({〈(𝑀 + 1),
(𝑀 + 1)〉} “
(1...𝑗)) × {1}) Fn
({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗))) |
| 238 | | fnresdisj 6688 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((({〈(𝑀 + 1),
(𝑀 + 1)〉} “
(1...𝑗)) × {1}) Fn
({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) → ((({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) ∩ (1...𝑀)) = ∅ ↔ ((({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) × {1}) ↾ (1...𝑀)) = ∅)) |
| 239 | 4, 237, 238 | mp2b 10 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((({〈(𝑀 + 1),
(𝑀 + 1)〉} “
(1...𝑗)) ∩ (1...𝑀)) = ∅ ↔
((({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) × {1}) ↾
(1...𝑀)) =
∅) |
| 240 | 236, 239 | sylib 218 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) × {1}) ↾ (1...𝑀)) = ∅) |
| 241 | 240 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) × {1}) ↾ (1...𝑀)) = ∅) |
| 242 | 226, 241 | uneq12d 4169 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((((𝑈 “ (1...𝑗)) × {1}) ↾ (1...𝑀)) ∪ ((({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) × {1}) ↾ (1...𝑀))) = (((𝑈 “ (1...𝑗)) × {1}) ∪
∅)) |
| 243 | | imaundir 6170 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) = ((𝑈 “ (1...𝑗)) ∪ ({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗))) |
| 244 | 243 | xpeq1i 5711 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) = (((𝑈 “ (1...𝑗)) ∪ ({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗))) × {1}) |
| 245 | | xpundir 5755 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑈 “ (1...𝑗)) ∪ ({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗))) × {1}) = (((𝑈 “ (1...𝑗)) × {1}) ∪ (({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) × {1})) |
| 246 | 244, 245 | eqtri 2765 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) = (((𝑈 “ (1...𝑗)) × {1}) ∪ (({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) × {1})) |
| 247 | 246 | reseq1i 5993 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ↾
(1...𝑀)) = ((((𝑈 “ (1...𝑗)) × {1}) ∪ (({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) × {1})) ↾ (1...𝑀)) |
| 248 | | resundir 6012 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑈 “ (1...𝑗)) × {1}) ∪ (({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) × {1})) ↾ (1...𝑀)) = ((((𝑈 “ (1...𝑗)) × {1}) ↾ (1...𝑀)) ∪ ((({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) × {1}) ↾ (1...𝑀))) |
| 249 | 247, 248 | eqtr2i 2766 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑈 “ (1...𝑗)) × {1}) ↾ (1...𝑀)) ∪ ((({〈(𝑀 + 1), (𝑀 + 1)〉} “ (1...𝑗)) × {1}) ↾ (1...𝑀))) = ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ↾
(1...𝑀)) |
| 250 | | un0 4394 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑈 “ (1...𝑗)) × {1}) ∪ ∅) = ((𝑈 “ (1...𝑗)) × {1}) |
| 251 | 242, 249,
250 | 3eqtr3g 2800 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ↾
(1...𝑀)) = ((𝑈 “ (1...𝑗)) × {1})) |
| 252 | | f1odm 6852 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑈:(1...𝑀)–1-1-onto→(1...𝑀) → dom 𝑈 = (1...𝑀)) |
| 253 | 11, 252 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → dom 𝑈 = (1...𝑀)) |
| 254 | 253 | ineq2d 4220 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → (((𝑗 + 1)...(𝑀 + 1)) ∩ dom 𝑈) = (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑀))) |
| 255 | 254 | reseq2d 5997 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝑈 ↾ (((𝑗 + 1)...(𝑀 + 1)) ∩ dom 𝑈)) = (𝑈 ↾ (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑀)))) |
| 256 | | f1orel 6851 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑈:(1...𝑀)–1-1-onto→(1...𝑀) → Rel 𝑈) |
| 257 | | resindm 6048 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (Rel
𝑈 → (𝑈 ↾ (((𝑗 + 1)...(𝑀 + 1)) ∩ dom 𝑈)) = (𝑈 ↾ ((𝑗 + 1)...(𝑀 + 1)))) |
| 258 | 11, 256, 257 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝑈 ↾ (((𝑗 + 1)...(𝑀 + 1)) ∩ dom 𝑈)) = (𝑈 ↾ ((𝑗 + 1)...(𝑀 + 1)))) |
| 259 | 255, 258 | eqtr3d 2779 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝑈 ↾ (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑀))) = (𝑈 ↾ ((𝑗 + 1)...(𝑀 + 1)))) |
| 260 | 34 | ineq2d 4220 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ (0...𝑀) → (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑀)) = (((𝑗 + 1)...(𝑀 + 1)) ∩ ((1...𝑗) ∪ ((𝑗 + 1)...𝑀)))) |
| 261 | | fzssp1 13607 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑗 + 1)...𝑀) ⊆ ((𝑗 + 1)...(𝑀 + 1)) |
| 262 | | sseqin2 4223 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑗 + 1)...𝑀) ⊆ ((𝑗 + 1)...(𝑀 + 1)) ↔ (((𝑗 + 1)...(𝑀 + 1)) ∩ ((𝑗 + 1)...𝑀)) = ((𝑗 + 1)...𝑀)) |
| 263 | 261, 262 | mpbi 230 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑗 + 1)...(𝑀 + 1)) ∩ ((𝑗 + 1)...𝑀)) = ((𝑗 + 1)...𝑀) |
| 264 | 263 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑗 ∈ (0...𝑀) → (((𝑗 + 1)...(𝑀 + 1)) ∩ ((𝑗 + 1)...𝑀)) = ((𝑗 + 1)...𝑀)) |
| 265 | | incom 4209 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑗)) = ((1...𝑗) ∩ ((𝑗 + 1)...(𝑀 + 1))) |
| 266 | 265, 132 | eqtrid 2789 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑗 ∈ (0...𝑀) → (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑗)) = ∅) |
| 267 | 264, 266 | uneq12d 4169 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 ∈ (0...𝑀) → ((((𝑗 + 1)...(𝑀 + 1)) ∩ ((𝑗 + 1)...𝑀)) ∪ (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑗))) = (((𝑗 + 1)...𝑀) ∪ ∅)) |
| 268 | | uncom 4158 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑗 + 1)...(𝑀 + 1)) ∩ ((𝑗 + 1)...𝑀)) ∪ (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑗))) = ((((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑗)) ∪ (((𝑗 + 1)...(𝑀 + 1)) ∩ ((𝑗 + 1)...𝑀))) |
| 269 | | indi 4284 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑗 + 1)...(𝑀 + 1)) ∩ ((1...𝑗) ∪ ((𝑗 + 1)...𝑀))) = ((((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑗)) ∪ (((𝑗 + 1)...(𝑀 + 1)) ∩ ((𝑗 + 1)...𝑀))) |
| 270 | 268, 269 | eqtr4i 2768 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑗 + 1)...(𝑀 + 1)) ∩ ((𝑗 + 1)...𝑀)) ∪ (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑗))) = (((𝑗 + 1)...(𝑀 + 1)) ∩ ((1...𝑗) ∪ ((𝑗 + 1)...𝑀))) |
| 271 | | un0 4394 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑗 + 1)...𝑀) ∪ ∅) = ((𝑗 + 1)...𝑀) |
| 272 | 267, 270,
271 | 3eqtr3g 2800 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ (0...𝑀) → (((𝑗 + 1)...(𝑀 + 1)) ∩ ((1...𝑗) ∪ ((𝑗 + 1)...𝑀))) = ((𝑗 + 1)...𝑀)) |
| 273 | 260, 272 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ (0...𝑀) → (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑀)) = ((𝑗 + 1)...𝑀)) |
| 274 | 273 | reseq2d 5997 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (0...𝑀) → (𝑈 ↾ (((𝑗 + 1)...(𝑀 + 1)) ∩ (1...𝑀))) = (𝑈 ↾ ((𝑗 + 1)...𝑀))) |
| 275 | 259, 274 | sylan9req 2798 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑈 ↾ ((𝑗 + 1)...(𝑀 + 1))) = (𝑈 ↾ ((𝑗 + 1)...𝑀))) |
| 276 | 275 | rneqd 5949 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ran (𝑈 ↾ ((𝑗 + 1)...(𝑀 + 1))) = ran (𝑈 ↾ ((𝑗 + 1)...𝑀))) |
| 277 | | df-ima 5698 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) = ran (𝑈 ↾ ((𝑗 + 1)...(𝑀 + 1))) |
| 278 | | df-ima 5698 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑈 “ ((𝑗 + 1)...𝑀)) = ran (𝑈 ↾ ((𝑗 + 1)...𝑀)) |
| 279 | 276, 277,
278 | 3eqtr4g 2802 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) = (𝑈 “ ((𝑗 + 1)...𝑀))) |
| 280 | 279 | xpeq1d 5714 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) = ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})) |
| 281 | 280 | reseq1d 5996 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) = (((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ↾ (1...𝑀))) |
| 282 | | relxp 5703 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ Rel
((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) |
| 283 | | dmxpss 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ dom
((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ⊆ (𝑈 “ ((𝑗 + 1)...𝑀)) |
| 284 | | imassrn 6089 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑈 “ ((𝑗 + 1)...𝑀)) ⊆ ran 𝑈 |
| 285 | 283, 284 | sstri 3993 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ dom
((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ⊆ ran 𝑈 |
| 286 | 285, 222 | sstrid 3995 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → dom ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ⊆ (1...𝑀)) |
| 287 | | relssres 6040 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((Rel
((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ∧ dom ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ⊆ (1...𝑀)) → (((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ↾ (1...𝑀)) = ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})) |
| 288 | 282, 286,
287 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ↾ (1...𝑀)) = ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})) |
| 289 | 288 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ↾ (1...𝑀)) = ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})) |
| 290 | 281, 289 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) = ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})) |
| 291 | | imassrn 6089 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
({〈(𝑀 + 1),
(𝑀 + 1)〉} “
((𝑗 + 1)...(𝑀 + 1))) ⊆ ran
{〈(𝑀 + 1), (𝑀 + 1)〉} |
| 292 | 291, 228 | sseqtri 4032 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
({〈(𝑀 + 1),
(𝑀 + 1)〉} “
((𝑗 + 1)...(𝑀 + 1))) ⊆ {(𝑀 + 1)} |
| 293 | | ssrin 4242 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(({〈(𝑀 + 1),
(𝑀 + 1)〉} “
((𝑗 + 1)...(𝑀 + 1))) ⊆ {(𝑀 + 1)} → (({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) ∩ (1...𝑀)) ⊆ ({(𝑀 + 1)} ∩ (1...𝑀))) |
| 294 | 292, 293 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(({〈(𝑀 + 1),
(𝑀 + 1)〉} “
((𝑗 + 1)...(𝑀 + 1))) ∩ (1...𝑀)) ⊆ ({(𝑀 + 1)} ∩ (1...𝑀)) |
| 295 | 294, 233 | sseqtrid 4026 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) ∩ (1...𝑀)) ⊆ ∅) |
| 296 | | ss0 4402 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((({〈(𝑀 + 1),
(𝑀 + 1)〉} “
((𝑗 + 1)...(𝑀 + 1))) ∩ (1...𝑀)) ⊆ ∅ →
(({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) ∩ (1...𝑀)) = ∅) |
| 297 | 295, 296 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) ∩ (1...𝑀)) = ∅) |
| 298 | | fnconstg 6796 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (0 ∈
V → (({〈(𝑀 + 1),
(𝑀 + 1)〉} “
((𝑗 + 1)...(𝑀 + 1))) × {0}) Fn
({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1)))) |
| 299 | | fnresdisj 6688 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((({〈(𝑀 + 1),
(𝑀 + 1)〉} “
((𝑗 + 1)...(𝑀 + 1))) × {0}) Fn
({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) → ((({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) ∩ (1...𝑀)) = ∅ ↔ ((({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) = ∅)) |
| 300 | 7, 298, 299 | mp2b 10 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((({〈(𝑀 + 1),
(𝑀 + 1)〉} “
((𝑗 + 1)...(𝑀 + 1))) ∩ (1...𝑀)) = ∅ ↔
((({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) = ∅) |
| 301 | 297, 300 | sylib 218 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) = ∅) |
| 302 | 301 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) = ∅) |
| 303 | 290, 302 | uneq12d 4169 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) ∪ ((({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀))) = (((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ∪
∅)) |
| 304 | 179 | xpeq1i 5711 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) = (((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) ∪ ({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1)))) × {0}) |
| 305 | | xpundir 5755 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) ∪ ({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1)))) × {0}) = (((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ∪ (({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) |
| 306 | 304, 305 | eqtri 2765 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) = (((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ∪ (({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) |
| 307 | 306 | reseq1i 5993 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) = ((((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ∪ (({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) ↾ (1...𝑀)) |
| 308 | | resundir 6012 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ∪ (({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) ↾ (1...𝑀)) = ((((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) ∪ ((({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀))) |
| 309 | 307, 308 | eqtr2i 2766 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑈 “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) ∪ ((({〈(𝑀 + 1), (𝑀 + 1)〉} “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀))) = ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) |
| 310 | | un0 4394 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) ∪ ∅) = ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}) |
| 311 | 303, 309,
310 | 3eqtr3g 2800 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀)) = ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0})) |
| 312 | 251, 311 | uneq12d 4169 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ↾
(1...𝑀)) ∪ ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) ↾ (1...𝑀))) = (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) |
| 313 | 215, 312 | eqtrid 2789 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) ↾ (1...𝑀)) = (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) |
| 314 | 313 | fveq1d 6908 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) ↾ (1...𝑀))‘𝑛) = ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛)) |
| 315 | 214, 314 | sylan9eqr 2799 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑛 ∈ (1...𝑀)) → (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛) = ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛)) |
| 316 | 212, 315 | oveq12d 7449 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑛 ∈ (1...𝑀)) → (((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) + (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛)) = ((𝑇‘𝑛) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛))) |
| 317 | 316 | mpteq2dva 5242 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑛 ∈ (1...𝑀) ↦ (((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) + (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛))) = (𝑛 ∈ (1...𝑀) ↦ ((𝑇‘𝑛) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛)))) |
| 318 | 317 | uneq1d 4167 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝑛 ∈ (1...𝑀) ↦ (((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘𝑛) + (((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛))) ∪ {〈(𝑀 + 1), 0〉}) = ((𝑛 ∈ (1...𝑀) ↦ ((𝑇‘𝑛) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛))) ∪ {〈(𝑀 + 1), 0〉})) |
| 319 | 158, 206,
318 | 3eqtr2d 2783 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘f +
((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) = ((𝑛 ∈ (1...𝑀) ↦ ((𝑇‘𝑛) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛))) ∪ {〈(𝑀 + 1), 0〉})) |
| 320 | 319 | uneq1d 4167 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘f +
((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) = (((𝑛 ∈ (1...𝑀) ↦ ((𝑇‘𝑛) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛))) ∪ {〈(𝑀 + 1), 0〉}) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0}))) |
| 321 | 83, 320 | eqtr4d 2780 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) = (((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘f +
((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0}))) |
| 322 | 321 | csbeq1d 3903 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ⦋((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 = ⦋(((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘f +
((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵) |
| 323 | 322 | eqeq2d 2748 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑖 = ⦋((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ 𝑖 = ⦋(((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘f +
((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 324 | 323 | rexbidva 3177 |
. . . . . 6
⊢ (𝜑 → (∃𝑗 ∈ (0...𝑀)𝑖 = ⦋((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘f +
((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 325 | 324 | ralbidv 3178 |
. . . . 5
⊢ (𝜑 → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘f +
((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 326 | 325 | biimpd 229 |
. . . 4
⊢ (𝜑 → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 → ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘f +
((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 327 | | f1ofn 6849 |
. . . . . . . 8
⊢ (𝑈:(1...𝑀)–1-1-onto→(1...𝑀) → 𝑈 Fn (1...𝑀)) |
| 328 | 11, 327 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑈 Fn (1...𝑀)) |
| 329 | 75, 75 | fnsn 6624 |
. . . . . . . . 9
⊢
{〈(𝑀 + 1),
(𝑀 + 1)〉} Fn {(𝑀 + 1)} |
| 330 | | fvun2 7001 |
. . . . . . . . 9
⊢ ((𝑈 Fn (1...𝑀) ∧ {〈(𝑀 + 1), (𝑀 + 1)〉} Fn {(𝑀 + 1)} ∧ (((1...𝑀) ∩ {(𝑀 + 1)}) = ∅ ∧ (𝑀 + 1) ∈ {(𝑀 + 1)})) → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})‘(𝑀 + 1)) = ({〈(𝑀 + 1), (𝑀 + 1)〉}‘(𝑀 + 1))) |
| 331 | 329, 330 | mp3an2 1451 |
. . . . . . . 8
⊢ ((𝑈 Fn (1...𝑀) ∧ (((1...𝑀) ∩ {(𝑀 + 1)}) = ∅ ∧ (𝑀 + 1) ∈ {(𝑀 + 1)})) → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})‘(𝑀 + 1)) = ({〈(𝑀 + 1), (𝑀 + 1)〉}‘(𝑀 + 1))) |
| 332 | 174, 331 | mpanr2 704 |
. . . . . . 7
⊢ ((𝑈 Fn (1...𝑀) ∧ ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅) → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})‘(𝑀 + 1)) = ({〈(𝑀 + 1), (𝑀 + 1)〉}‘(𝑀 + 1))) |
| 333 | 328, 92, 332 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})‘(𝑀 + 1)) = ({〈(𝑀 + 1), (𝑀 + 1)〉}‘(𝑀 + 1))) |
| 334 | 75, 75 | fvsn 7201 |
. . . . . 6
⊢
({〈(𝑀 + 1),
(𝑀 + 1)〉}‘(𝑀 + 1)) = (𝑀 + 1) |
| 335 | 333, 334 | eqtrdi 2793 |
. . . . 5
⊢ (𝜑 → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})‘(𝑀 + 1)) = (𝑀 + 1)) |
| 336 | 191, 335 | jca 511 |
. . . 4
⊢ (𝜑 → (((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1)) = 0 ∧ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})‘(𝑀 + 1)) = (𝑀 + 1))) |
| 337 | 326, 336 | jctird 526 |
. . 3
⊢ (𝜑 → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘f +
((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ (((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1)) = 0 ∧ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})‘(𝑀 + 1)) = (𝑀 + 1))))) |
| 338 | | 3anass 1095 |
. . 3
⊢
((∀𝑖 ∈
(0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘f +
((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1)) = 0 ∧ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})‘(𝑀 + 1)) = (𝑀 + 1)) ↔ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘f +
((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ (((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1)) = 0 ∧ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})‘(𝑀 + 1)) = (𝑀 + 1)))) |
| 339 | 337, 338 | imbitrrdi 252 |
. 2
⊢ (𝜑 → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘f +
((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1)) = 0 ∧ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})‘(𝑀 + 1)) = (𝑀 + 1)))) |
| 340 | 1, 95 | jctir 520 |
. . . . . 6
⊢ (𝜑 → (𝑇:(1...𝑀)⟶(0..^𝐾) ∧ {〈(𝑀 + 1), 0〉}:{(𝑀 + 1)}⟶{0})) |
| 341 | 340, 92, 96 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝑇 ∪ {〈(𝑀 + 1), 0〉}):((1...𝑀) ∪ {(𝑀 + 1)})⟶((0..^𝐾) ∪ {0})) |
| 342 | 341, 114 | mpbid 232 |
. . . 4
⊢ (𝜑 → (𝑇 ∪ {〈(𝑀 + 1), 0〉}):(1...(𝑀 + 1))⟶(0..^𝐾)) |
| 343 | | ovex 7464 |
. . . . 5
⊢
(0..^𝐾) ∈
V |
| 344 | | ovex 7464 |
. . . . 5
⊢
(1...(𝑀 + 1)) ∈
V |
| 345 | 343, 344 | elmap 8911 |
. . . 4
⊢ ((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∈ ((0..^𝐾) ↑m (1...(𝑀 + 1))) ↔ (𝑇 ∪ {〈(𝑀 + 1), 0〉}):(1...(𝑀 + 1))⟶(0..^𝐾)) |
| 346 | 342, 345 | sylibr 234 |
. . 3
⊢ (𝜑 → (𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∈ ((0..^𝐾) ↑m (1...(𝑀 + 1)))) |
| 347 | | ovex 7464 |
. . . . . . . 8
⊢
(1...𝑀) ∈
V |
| 348 | | f1oexrnex 7949 |
. . . . . . . 8
⊢ ((𝑈:(1...𝑀)–1-1-onto→(1...𝑀) ∧ (1...𝑀) ∈ V) → 𝑈 ∈ V) |
| 349 | 11, 347, 348 | sylancl 586 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ V) |
| 350 | | snex 5436 |
. . . . . . 7
⊢
{〈(𝑀 + 1),
(𝑀 + 1)〉} ∈
V |
| 351 | | unexg 7763 |
. . . . . . 7
⊢ ((𝑈 ∈ V ∧ {〈(𝑀 + 1), (𝑀 + 1)〉} ∈ V) → (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) ∈ V) |
| 352 | 349, 350,
351 | sylancl 586 |
. . . . . 6
⊢ (𝜑 → (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) ∈ V) |
| 353 | | f1oeq1 6836 |
. . . . . . 7
⊢ (𝑓 = (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) → (𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1)) ↔ (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1)))) |
| 354 | 353 | elabg 3676 |
. . . . . 6
⊢ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) ∈ V → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) ∈ {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))} ↔ (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1)))) |
| 355 | 352, 354 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) ∈ {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))} ↔ (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1)))) |
| 356 | | f1oeq23 6839 |
. . . . . 6
⊢
(((1...(𝑀 + 1)) =
((1...𝑀) ∪ {(𝑀 + 1)}) ∧ (1...(𝑀 + 1)) = ((1...𝑀) ∪ {(𝑀 + 1)})) → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1)) ↔ (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):((1...𝑀) ∪ {(𝑀 + 1)})–1-1-onto→((1...𝑀) ∪ {(𝑀 + 1)}))) |
| 357 | 106, 106,
356 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1)) ↔ (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):((1...𝑀) ∪ {(𝑀 + 1)})–1-1-onto→((1...𝑀) ∪ {(𝑀 + 1)}))) |
| 358 | 355, 357 | bitrd 279 |
. . . 4
⊢ (𝜑 → ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) ∈ {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))} ↔ (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}):((1...𝑀) ∪ {(𝑀 + 1)})–1-1-onto→((1...𝑀) ∪ {(𝑀 + 1)}))) |
| 359 | 126, 358 | mpbird 257 |
. . 3
⊢ (𝜑 → (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) ∈ {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) |
| 360 | 346, 359 | opelxpd 5724 |
. 2
⊢ (𝜑 → 〈(𝑇 ∪ {〈(𝑀 + 1), 0〉}), (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})〉 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) |
| 361 | 339, 360 | jctild 525 |
1
⊢ (𝜑 → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 → (〈(𝑇 ∪ {〈(𝑀 + 1), 0〉}), (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})〉 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∧ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘f +
((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1)) = 0 ∧ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})‘(𝑀 + 1)) = (𝑀 + 1))))) |