Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1ocan2fv Structured version   Visualization version   GIF version

Theorem f1ocan2fv 36590
Description: Cancel a composition by the converse of a bijection by preapplying the bijection. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
f1ocan2fv ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐴) → ((𝐹𝐺)‘(𝐺𝑋)) = (𝐹𝑋))

Proof of Theorem f1ocan2fv
StepHypRef Expression
1 f1orel 6836 . . . . . 6 (𝐺:𝐴1-1-onto𝐵 → Rel 𝐺)
2 dfrel2 6188 . . . . . 6 (Rel 𝐺𝐺 = 𝐺)
31, 2sylib 217 . . . . 5 (𝐺:𝐴1-1-onto𝐵𝐺 = 𝐺)
433ad2ant2 1134 . . . 4 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐴) → 𝐺 = 𝐺)
54fveq1d 6893 . . 3 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐴) → (𝐺𝑋) = (𝐺𝑋))
65fveq2d 6895 . 2 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐴) → ((𝐹𝐺)‘(𝐺𝑋)) = ((𝐹𝐺)‘(𝐺𝑋)))
7 f1ocnv 6845 . . 3 (𝐺:𝐴1-1-onto𝐵𝐺:𝐵1-1-onto𝐴)
8 f1ocan1fv 36589 . . 3 ((Fun 𝐹𝐺:𝐵1-1-onto𝐴𝑋𝐴) → ((𝐹𝐺)‘(𝐺𝑋)) = (𝐹𝑋))
97, 8syl3an2 1164 . 2 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐴) → ((𝐹𝐺)‘(𝐺𝑋)) = (𝐹𝑋))
106, 9eqtr3d 2774 1 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐴) → ((𝐹𝐺)‘(𝐺𝑋)) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  ccnv 5675  ccom 5680  Rel wrel 5681  Fun wfun 6537  1-1-ontowf1o 6542  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator