Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1ocan2fv Structured version   Visualization version   GIF version

Theorem f1ocan2fv 37775
Description: Cancel a composition by the converse of a bijection by preapplying the bijection. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
f1ocan2fv ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐴) → ((𝐹𝐺)‘(𝐺𝑋)) = (𝐹𝑋))

Proof of Theorem f1ocan2fv
StepHypRef Expression
1 f1orel 6766 . . . . . 6 (𝐺:𝐴1-1-onto𝐵 → Rel 𝐺)
2 dfrel2 6136 . . . . . 6 (Rel 𝐺𝐺 = 𝐺)
31, 2sylib 218 . . . . 5 (𝐺:𝐴1-1-onto𝐵𝐺 = 𝐺)
433ad2ant2 1134 . . . 4 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐴) → 𝐺 = 𝐺)
54fveq1d 6824 . . 3 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐴) → (𝐺𝑋) = (𝐺𝑋))
65fveq2d 6826 . 2 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐴) → ((𝐹𝐺)‘(𝐺𝑋)) = ((𝐹𝐺)‘(𝐺𝑋)))
7 f1ocnv 6775 . . 3 (𝐺:𝐴1-1-onto𝐵𝐺:𝐵1-1-onto𝐴)
8 f1ocan1fv 37774 . . 3 ((Fun 𝐹𝐺:𝐵1-1-onto𝐴𝑋𝐴) → ((𝐹𝐺)‘(𝐺𝑋)) = (𝐹𝑋))
97, 8syl3an2 1164 . 2 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐴) → ((𝐹𝐺)‘(𝐺𝑋)) = (𝐹𝑋))
106, 9eqtr3d 2768 1 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐴) → ((𝐹𝐺)‘(𝐺𝑋)) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  ccnv 5613  ccom 5618  Rel wrel 5619  Fun wfun 6475  1-1-ontowf1o 6480  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator