![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1ocan2fv | Structured version Visualization version GIF version |
Description: Cancel a composition by the converse of a bijection by preapplying the bijection. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
f1ocan2fv | ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ ◡𝐺)‘(𝐺‘𝑋)) = (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1orel 6859 | . . . . . 6 ⊢ (𝐺:𝐴–1-1-onto→𝐵 → Rel 𝐺) | |
2 | dfrel2 6217 | . . . . . 6 ⊢ (Rel 𝐺 ↔ ◡◡𝐺 = 𝐺) | |
3 | 1, 2 | sylib 218 | . . . . 5 ⊢ (𝐺:𝐴–1-1-onto→𝐵 → ◡◡𝐺 = 𝐺) |
4 | 3 | 3ad2ant2 1135 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → ◡◡𝐺 = 𝐺) |
5 | 4 | fveq1d 6916 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → (◡◡𝐺‘𝑋) = (𝐺‘𝑋)) |
6 | 5 | fveq2d 6918 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ ◡𝐺)‘(◡◡𝐺‘𝑋)) = ((𝐹 ∘ ◡𝐺)‘(𝐺‘𝑋))) |
7 | f1ocnv 6868 | . . 3 ⊢ (𝐺:𝐴–1-1-onto→𝐵 → ◡𝐺:𝐵–1-1-onto→𝐴) | |
8 | f1ocan1fv 37727 | . . 3 ⊢ ((Fun 𝐹 ∧ ◡𝐺:𝐵–1-1-onto→𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ ◡𝐺)‘(◡◡𝐺‘𝑋)) = (𝐹‘𝑋)) | |
9 | 7, 8 | syl3an2 1165 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ ◡𝐺)‘(◡◡𝐺‘𝑋)) = (𝐹‘𝑋)) |
10 | 6, 9 | eqtr3d 2779 | 1 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ ◡𝐺)‘(𝐺‘𝑋)) = (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ◡ccnv 5692 ∘ ccom 5697 Rel wrel 5698 Fun wfun 6563 –1-1-onto→wf1o 6568 ‘cfv 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |