![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1ocan2fv | Structured version Visualization version GIF version |
Description: Cancel a composition by the converse of a bijection by preapplying the bijection. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
f1ocan2fv | ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ ◡𝐺)‘(𝐺‘𝑋)) = (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1orel 6835 | . . . . . 6 ⊢ (𝐺:𝐴–1-1-onto→𝐵 → Rel 𝐺) | |
2 | dfrel2 6186 | . . . . . 6 ⊢ (Rel 𝐺 ↔ ◡◡𝐺 = 𝐺) | |
3 | 1, 2 | sylib 217 | . . . . 5 ⊢ (𝐺:𝐴–1-1-onto→𝐵 → ◡◡𝐺 = 𝐺) |
4 | 3 | 3ad2ant2 1131 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → ◡◡𝐺 = 𝐺) |
5 | 4 | fveq1d 6892 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → (◡◡𝐺‘𝑋) = (𝐺‘𝑋)) |
6 | 5 | fveq2d 6894 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ ◡𝐺)‘(◡◡𝐺‘𝑋)) = ((𝐹 ∘ ◡𝐺)‘(𝐺‘𝑋))) |
7 | f1ocnv 6844 | . . 3 ⊢ (𝐺:𝐴–1-1-onto→𝐵 → ◡𝐺:𝐵–1-1-onto→𝐴) | |
8 | f1ocan1fv 37228 | . . 3 ⊢ ((Fun 𝐹 ∧ ◡𝐺:𝐵–1-1-onto→𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ ◡𝐺)‘(◡◡𝐺‘𝑋)) = (𝐹‘𝑋)) | |
9 | 7, 8 | syl3an2 1161 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ ◡𝐺)‘(◡◡𝐺‘𝑋)) = (𝐹‘𝑋)) |
10 | 6, 9 | eqtr3d 2767 | 1 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ ◡𝐺)‘(𝐺‘𝑋)) = (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ◡ccnv 5669 ∘ ccom 5674 Rel wrel 5675 Fun wfun 6535 –1-1-onto→wf1o 6540 ‘cfv 6541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5292 ax-nul 5299 ax-pr 5421 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4317 df-if 4523 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-opab 5204 df-id 5568 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |