![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1ocan2fv | Structured version Visualization version GIF version |
Description: Cancel a composition by the converse of a bijection by preapplying the bijection. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
f1ocan2fv | ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ ◡𝐺)‘(𝐺‘𝑋)) = (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1orel 6830 | . . . . . 6 ⊢ (𝐺:𝐴–1-1-onto→𝐵 → Rel 𝐺) | |
2 | dfrel2 6182 | . . . . . 6 ⊢ (Rel 𝐺 ↔ ◡◡𝐺 = 𝐺) | |
3 | 1, 2 | sylib 217 | . . . . 5 ⊢ (𝐺:𝐴–1-1-onto→𝐵 → ◡◡𝐺 = 𝐺) |
4 | 3 | 3ad2ant2 1131 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → ◡◡𝐺 = 𝐺) |
5 | 4 | fveq1d 6887 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → (◡◡𝐺‘𝑋) = (𝐺‘𝑋)) |
6 | 5 | fveq2d 6889 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ ◡𝐺)‘(◡◡𝐺‘𝑋)) = ((𝐹 ∘ ◡𝐺)‘(𝐺‘𝑋))) |
7 | f1ocnv 6839 | . . 3 ⊢ (𝐺:𝐴–1-1-onto→𝐵 → ◡𝐺:𝐵–1-1-onto→𝐴) | |
8 | f1ocan1fv 37107 | . . 3 ⊢ ((Fun 𝐹 ∧ ◡𝐺:𝐵–1-1-onto→𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ ◡𝐺)‘(◡◡𝐺‘𝑋)) = (𝐹‘𝑋)) | |
9 | 7, 8 | syl3an2 1161 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ ◡𝐺)‘(◡◡𝐺‘𝑋)) = (𝐹‘𝑋)) |
10 | 6, 9 | eqtr3d 2768 | 1 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ ◡𝐺)‘(𝐺‘𝑋)) = (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ◡ccnv 5668 ∘ ccom 5673 Rel wrel 5674 Fun wfun 6531 –1-1-onto→wf1o 6536 ‘cfv 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |