| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > f1ocan2fv | Structured version Visualization version GIF version | ||
| Description: Cancel a composition by the converse of a bijection by preapplying the bijection. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| f1ocan2fv | ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ ◡𝐺)‘(𝐺‘𝑋)) = (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1orel 6766 | . . . . . 6 ⊢ (𝐺:𝐴–1-1-onto→𝐵 → Rel 𝐺) | |
| 2 | dfrel2 6136 | . . . . . 6 ⊢ (Rel 𝐺 ↔ ◡◡𝐺 = 𝐺) | |
| 3 | 1, 2 | sylib 218 | . . . . 5 ⊢ (𝐺:𝐴–1-1-onto→𝐵 → ◡◡𝐺 = 𝐺) |
| 4 | 3 | 3ad2ant2 1134 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → ◡◡𝐺 = 𝐺) |
| 5 | 4 | fveq1d 6824 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → (◡◡𝐺‘𝑋) = (𝐺‘𝑋)) |
| 6 | 5 | fveq2d 6826 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ ◡𝐺)‘(◡◡𝐺‘𝑋)) = ((𝐹 ∘ ◡𝐺)‘(𝐺‘𝑋))) |
| 7 | f1ocnv 6775 | . . 3 ⊢ (𝐺:𝐴–1-1-onto→𝐵 → ◡𝐺:𝐵–1-1-onto→𝐴) | |
| 8 | f1ocan1fv 37774 | . . 3 ⊢ ((Fun 𝐹 ∧ ◡𝐺:𝐵–1-1-onto→𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ ◡𝐺)‘(◡◡𝐺‘𝑋)) = (𝐹‘𝑋)) | |
| 9 | 7, 8 | syl3an2 1164 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ ◡𝐺)‘(◡◡𝐺‘𝑋)) = (𝐹‘𝑋)) |
| 10 | 6, 9 | eqtr3d 2768 | 1 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ ◡𝐺)‘(𝐺‘𝑋)) = (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ◡ccnv 5613 ∘ ccom 5618 Rel wrel 5619 Fun wfun 6475 –1-1-onto→wf1o 6480 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |