| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > f1ocan2fv | Structured version Visualization version GIF version | ||
| Description: Cancel a composition by the converse of a bijection by preapplying the bijection. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| f1ocan2fv | ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ ◡𝐺)‘(𝐺‘𝑋)) = (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1orel 6805 | . . . . . 6 ⊢ (𝐺:𝐴–1-1-onto→𝐵 → Rel 𝐺) | |
| 2 | dfrel2 6164 | . . . . . 6 ⊢ (Rel 𝐺 ↔ ◡◡𝐺 = 𝐺) | |
| 3 | 1, 2 | sylib 218 | . . . . 5 ⊢ (𝐺:𝐴–1-1-onto→𝐵 → ◡◡𝐺 = 𝐺) |
| 4 | 3 | 3ad2ant2 1134 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → ◡◡𝐺 = 𝐺) |
| 5 | 4 | fveq1d 6862 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → (◡◡𝐺‘𝑋) = (𝐺‘𝑋)) |
| 6 | 5 | fveq2d 6864 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ ◡𝐺)‘(◡◡𝐺‘𝑋)) = ((𝐹 ∘ ◡𝐺)‘(𝐺‘𝑋))) |
| 7 | f1ocnv 6814 | . . 3 ⊢ (𝐺:𝐴–1-1-onto→𝐵 → ◡𝐺:𝐵–1-1-onto→𝐴) | |
| 8 | f1ocan1fv 37715 | . . 3 ⊢ ((Fun 𝐹 ∧ ◡𝐺:𝐵–1-1-onto→𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ ◡𝐺)‘(◡◡𝐺‘𝑋)) = (𝐹‘𝑋)) | |
| 9 | 7, 8 | syl3an2 1164 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ ◡𝐺)‘(◡◡𝐺‘𝑋)) = (𝐹‘𝑋)) |
| 10 | 6, 9 | eqtr3d 2767 | 1 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ ◡𝐺)‘(𝐺‘𝑋)) = (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ◡ccnv 5639 ∘ ccom 5644 Rel wrel 5645 Fun wfun 6507 –1-1-onto→wf1o 6512 ‘cfv 6513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |