![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brco2f1o | Structured version Visualization version GIF version |
Description: Conditions allowing the decomposition of a binary relation. (Contributed by RP, 8-Jun-2021.) |
Ref | Expression |
---|---|
brco2f1o.c | ⊢ (𝜑 → 𝐶:𝑌–1-1-onto→𝑍) |
brco2f1o.d | ⊢ (𝜑 → 𝐷:𝑋–1-1-onto→𝑌) |
brco2f1o.r | ⊢ (𝜑 → 𝐴(𝐶 ∘ 𝐷)𝐵) |
Ref | Expression |
---|---|
brco2f1o | ⊢ (𝜑 → ((◡𝐶‘𝐵)𝐶𝐵 ∧ 𝐴𝐷(◡𝐶‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brco2f1o.d | . . . 4 ⊢ (𝜑 → 𝐷:𝑋–1-1-onto→𝑌) | |
2 | f1ocnv 6874 | . . . 4 ⊢ (𝐷:𝑋–1-1-onto→𝑌 → ◡𝐷:𝑌–1-1-onto→𝑋) | |
3 | f1ofn 6863 | . . . 4 ⊢ (◡𝐷:𝑌–1-1-onto→𝑋 → ◡𝐷 Fn 𝑌) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝜑 → ◡𝐷 Fn 𝑌) |
5 | brco2f1o.c | . . . 4 ⊢ (𝜑 → 𝐶:𝑌–1-1-onto→𝑍) | |
6 | f1ocnv 6874 | . . . 4 ⊢ (𝐶:𝑌–1-1-onto→𝑍 → ◡𝐶:𝑍–1-1-onto→𝑌) | |
7 | f1of 6862 | . . . 4 ⊢ (◡𝐶:𝑍–1-1-onto→𝑌 → ◡𝐶:𝑍⟶𝑌) | |
8 | 5, 6, 7 | 3syl 18 | . . 3 ⊢ (𝜑 → ◡𝐶:𝑍⟶𝑌) |
9 | brco2f1o.r | . . . 4 ⊢ (𝜑 → 𝐴(𝐶 ∘ 𝐷)𝐵) | |
10 | relco 6138 | . . . . . 6 ⊢ Rel (𝐶 ∘ 𝐷) | |
11 | 10 | relbrcnv 6137 | . . . . 5 ⊢ (𝐵◡(𝐶 ∘ 𝐷)𝐴 ↔ 𝐴(𝐶 ∘ 𝐷)𝐵) |
12 | cnvco 5910 | . . . . . 6 ⊢ ◡(𝐶 ∘ 𝐷) = (◡𝐷 ∘ ◡𝐶) | |
13 | 12 | breqi 5172 | . . . . 5 ⊢ (𝐵◡(𝐶 ∘ 𝐷)𝐴 ↔ 𝐵(◡𝐷 ∘ ◡𝐶)𝐴) |
14 | 11, 13 | bitr3i 277 | . . . 4 ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ 𝐵(◡𝐷 ∘ ◡𝐶)𝐴) |
15 | 9, 14 | sylib 218 | . . 3 ⊢ (𝜑 → 𝐵(◡𝐷 ∘ ◡𝐶)𝐴) |
16 | 4, 8, 15 | brcoffn 43992 | . 2 ⊢ (𝜑 → (𝐵◡𝐶(◡𝐶‘𝐵) ∧ (◡𝐶‘𝐵)◡𝐷𝐴)) |
17 | f1orel 6865 | . . . 4 ⊢ (𝐶:𝑌–1-1-onto→𝑍 → Rel 𝐶) | |
18 | relbrcnvg 6135 | . . . 4 ⊢ (Rel 𝐶 → (𝐵◡𝐶(◡𝐶‘𝐵) ↔ (◡𝐶‘𝐵)𝐶𝐵)) | |
19 | 5, 17, 18 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝐵◡𝐶(◡𝐶‘𝐵) ↔ (◡𝐶‘𝐵)𝐶𝐵)) |
20 | f1orel 6865 | . . . 4 ⊢ (𝐷:𝑋–1-1-onto→𝑌 → Rel 𝐷) | |
21 | relbrcnvg 6135 | . . . 4 ⊢ (Rel 𝐷 → ((◡𝐶‘𝐵)◡𝐷𝐴 ↔ 𝐴𝐷(◡𝐶‘𝐵))) | |
22 | 1, 20, 21 | 3syl 18 | . . 3 ⊢ (𝜑 → ((◡𝐶‘𝐵)◡𝐷𝐴 ↔ 𝐴𝐷(◡𝐶‘𝐵))) |
23 | 19, 22 | anbi12d 631 | . 2 ⊢ (𝜑 → ((𝐵◡𝐶(◡𝐶‘𝐵) ∧ (◡𝐶‘𝐵)◡𝐷𝐴) ↔ ((◡𝐶‘𝐵)𝐶𝐵 ∧ 𝐴𝐷(◡𝐶‘𝐵)))) |
24 | 16, 23 | mpbid 232 | 1 ⊢ (𝜑 → ((◡𝐶‘𝐵)𝐶𝐵 ∧ 𝐴𝐷(◡𝐶‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 class class class wbr 5166 ◡ccnv 5699 ∘ ccom 5704 Rel wrel 5705 Fn wfn 6568 ⟶wf 6569 –1-1-onto→wf1o 6572 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |