Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brco2f1o | Structured version Visualization version GIF version |
Description: Conditions allowing the decomposition of a binary relation. (Contributed by RP, 8-Jun-2021.) |
Ref | Expression |
---|---|
brco2f1o.c | ⊢ (𝜑 → 𝐶:𝑌–1-1-onto→𝑍) |
brco2f1o.d | ⊢ (𝜑 → 𝐷:𝑋–1-1-onto→𝑌) |
brco2f1o.r | ⊢ (𝜑 → 𝐴(𝐶 ∘ 𝐷)𝐵) |
Ref | Expression |
---|---|
brco2f1o | ⊢ (𝜑 → ((◡𝐶‘𝐵)𝐶𝐵 ∧ 𝐴𝐷(◡𝐶‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brco2f1o.d | . . . 4 ⊢ (𝜑 → 𝐷:𝑋–1-1-onto→𝑌) | |
2 | f1ocnv 6712 | . . . 4 ⊢ (𝐷:𝑋–1-1-onto→𝑌 → ◡𝐷:𝑌–1-1-onto→𝑋) | |
3 | f1ofn 6701 | . . . 4 ⊢ (◡𝐷:𝑌–1-1-onto→𝑋 → ◡𝐷 Fn 𝑌) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝜑 → ◡𝐷 Fn 𝑌) |
5 | brco2f1o.c | . . . 4 ⊢ (𝜑 → 𝐶:𝑌–1-1-onto→𝑍) | |
6 | f1ocnv 6712 | . . . 4 ⊢ (𝐶:𝑌–1-1-onto→𝑍 → ◡𝐶:𝑍–1-1-onto→𝑌) | |
7 | f1of 6700 | . . . 4 ⊢ (◡𝐶:𝑍–1-1-onto→𝑌 → ◡𝐶:𝑍⟶𝑌) | |
8 | 5, 6, 7 | 3syl 18 | . . 3 ⊢ (𝜑 → ◡𝐶:𝑍⟶𝑌) |
9 | brco2f1o.r | . . . 4 ⊢ (𝜑 → 𝐴(𝐶 ∘ 𝐷)𝐵) | |
10 | relco 6137 | . . . . . 6 ⊢ Rel (𝐶 ∘ 𝐷) | |
11 | 10 | relbrcnv 6004 | . . . . 5 ⊢ (𝐵◡(𝐶 ∘ 𝐷)𝐴 ↔ 𝐴(𝐶 ∘ 𝐷)𝐵) |
12 | cnvco 5783 | . . . . . 6 ⊢ ◡(𝐶 ∘ 𝐷) = (◡𝐷 ∘ ◡𝐶) | |
13 | 12 | breqi 5076 | . . . . 5 ⊢ (𝐵◡(𝐶 ∘ 𝐷)𝐴 ↔ 𝐵(◡𝐷 ∘ ◡𝐶)𝐴) |
14 | 11, 13 | bitr3i 276 | . . . 4 ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ 𝐵(◡𝐷 ∘ ◡𝐶)𝐴) |
15 | 9, 14 | sylib 217 | . . 3 ⊢ (𝜑 → 𝐵(◡𝐷 ∘ ◡𝐶)𝐴) |
16 | 4, 8, 15 | brcoffn 41529 | . 2 ⊢ (𝜑 → (𝐵◡𝐶(◡𝐶‘𝐵) ∧ (◡𝐶‘𝐵)◡𝐷𝐴)) |
17 | f1orel 6703 | . . . 4 ⊢ (𝐶:𝑌–1-1-onto→𝑍 → Rel 𝐶) | |
18 | relbrcnvg 6002 | . . . 4 ⊢ (Rel 𝐶 → (𝐵◡𝐶(◡𝐶‘𝐵) ↔ (◡𝐶‘𝐵)𝐶𝐵)) | |
19 | 5, 17, 18 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝐵◡𝐶(◡𝐶‘𝐵) ↔ (◡𝐶‘𝐵)𝐶𝐵)) |
20 | f1orel 6703 | . . . 4 ⊢ (𝐷:𝑋–1-1-onto→𝑌 → Rel 𝐷) | |
21 | relbrcnvg 6002 | . . . 4 ⊢ (Rel 𝐷 → ((◡𝐶‘𝐵)◡𝐷𝐴 ↔ 𝐴𝐷(◡𝐶‘𝐵))) | |
22 | 1, 20, 21 | 3syl 18 | . . 3 ⊢ (𝜑 → ((◡𝐶‘𝐵)◡𝐷𝐴 ↔ 𝐴𝐷(◡𝐶‘𝐵))) |
23 | 19, 22 | anbi12d 630 | . 2 ⊢ (𝜑 → ((𝐵◡𝐶(◡𝐶‘𝐵) ∧ (◡𝐶‘𝐵)◡𝐷𝐴) ↔ ((◡𝐶‘𝐵)𝐶𝐵 ∧ 𝐴𝐷(◡𝐶‘𝐵)))) |
24 | 16, 23 | mpbid 231 | 1 ⊢ (𝜑 → ((◡𝐶‘𝐵)𝐶𝐵 ∧ 𝐴𝐷(◡𝐶‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 class class class wbr 5070 ◡ccnv 5579 ∘ ccom 5584 Rel wrel 5585 Fn wfn 6413 ⟶wf 6414 –1-1-onto→wf1o 6417 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |