![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brco2f1o | Structured version Visualization version GIF version |
Description: Conditions allowing the decomposition of a binary relation. (Contributed by RP, 8-Jun-2021.) |
Ref | Expression |
---|---|
brco2f1o.c | ⊢ (𝜑 → 𝐶:𝑌–1-1-onto→𝑍) |
brco2f1o.d | ⊢ (𝜑 → 𝐷:𝑋–1-1-onto→𝑌) |
brco2f1o.r | ⊢ (𝜑 → 𝐴(𝐶 ∘ 𝐷)𝐵) |
Ref | Expression |
---|---|
brco2f1o | ⊢ (𝜑 → ((◡𝐶‘𝐵)𝐶𝐵 ∧ 𝐴𝐷(◡𝐶‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brco2f1o.d | . . . 4 ⊢ (𝜑 → 𝐷:𝑋–1-1-onto→𝑌) | |
2 | f1ocnv 6835 | . . . 4 ⊢ (𝐷:𝑋–1-1-onto→𝑌 → ◡𝐷:𝑌–1-1-onto→𝑋) | |
3 | f1ofn 6824 | . . . 4 ⊢ (◡𝐷:𝑌–1-1-onto→𝑋 → ◡𝐷 Fn 𝑌) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝜑 → ◡𝐷 Fn 𝑌) |
5 | brco2f1o.c | . . . 4 ⊢ (𝜑 → 𝐶:𝑌–1-1-onto→𝑍) | |
6 | f1ocnv 6835 | . . . 4 ⊢ (𝐶:𝑌–1-1-onto→𝑍 → ◡𝐶:𝑍–1-1-onto→𝑌) | |
7 | f1of 6823 | . . . 4 ⊢ (◡𝐶:𝑍–1-1-onto→𝑌 → ◡𝐶:𝑍⟶𝑌) | |
8 | 5, 6, 7 | 3syl 18 | . . 3 ⊢ (𝜑 → ◡𝐶:𝑍⟶𝑌) |
9 | brco2f1o.r | . . . 4 ⊢ (𝜑 → 𝐴(𝐶 ∘ 𝐷)𝐵) | |
10 | relco 6097 | . . . . . 6 ⊢ Rel (𝐶 ∘ 𝐷) | |
11 | 10 | relbrcnv 6096 | . . . . 5 ⊢ (𝐵◡(𝐶 ∘ 𝐷)𝐴 ↔ 𝐴(𝐶 ∘ 𝐷)𝐵) |
12 | cnvco 5875 | . . . . . 6 ⊢ ◡(𝐶 ∘ 𝐷) = (◡𝐷 ∘ ◡𝐶) | |
13 | 12 | breqi 5144 | . . . . 5 ⊢ (𝐵◡(𝐶 ∘ 𝐷)𝐴 ↔ 𝐵(◡𝐷 ∘ ◡𝐶)𝐴) |
14 | 11, 13 | bitr3i 277 | . . . 4 ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ 𝐵(◡𝐷 ∘ ◡𝐶)𝐴) |
15 | 9, 14 | sylib 217 | . . 3 ⊢ (𝜑 → 𝐵(◡𝐷 ∘ ◡𝐶)𝐴) |
16 | 4, 8, 15 | brcoffn 43236 | . 2 ⊢ (𝜑 → (𝐵◡𝐶(◡𝐶‘𝐵) ∧ (◡𝐶‘𝐵)◡𝐷𝐴)) |
17 | f1orel 6826 | . . . 4 ⊢ (𝐶:𝑌–1-1-onto→𝑍 → Rel 𝐶) | |
18 | relbrcnvg 6094 | . . . 4 ⊢ (Rel 𝐶 → (𝐵◡𝐶(◡𝐶‘𝐵) ↔ (◡𝐶‘𝐵)𝐶𝐵)) | |
19 | 5, 17, 18 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝐵◡𝐶(◡𝐶‘𝐵) ↔ (◡𝐶‘𝐵)𝐶𝐵)) |
20 | f1orel 6826 | . . . 4 ⊢ (𝐷:𝑋–1-1-onto→𝑌 → Rel 𝐷) | |
21 | relbrcnvg 6094 | . . . 4 ⊢ (Rel 𝐷 → ((◡𝐶‘𝐵)◡𝐷𝐴 ↔ 𝐴𝐷(◡𝐶‘𝐵))) | |
22 | 1, 20, 21 | 3syl 18 | . . 3 ⊢ (𝜑 → ((◡𝐶‘𝐵)◡𝐷𝐴 ↔ 𝐴𝐷(◡𝐶‘𝐵))) |
23 | 19, 22 | anbi12d 630 | . 2 ⊢ (𝜑 → ((𝐵◡𝐶(◡𝐶‘𝐵) ∧ (◡𝐶‘𝐵)◡𝐷𝐴) ↔ ((◡𝐶‘𝐵)𝐶𝐵 ∧ 𝐴𝐷(◡𝐶‘𝐵)))) |
24 | 16, 23 | mpbid 231 | 1 ⊢ (𝜑 → ((◡𝐶‘𝐵)𝐶𝐵 ∧ 𝐴𝐷(◡𝐶‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 class class class wbr 5138 ◡ccnv 5665 ∘ ccom 5670 Rel wrel 5671 Fn wfn 6528 ⟶wf 6529 –1-1-onto→wf1o 6532 ‘cfv 6533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |