| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneinex | Structured version Visualization version GIF version | ||
| Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the neighborhood function exists. (Contributed by RP, 29-May-2021.) |
| Ref | Expression |
|---|---|
| ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
| ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
| ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
| Ref | Expression |
|---|---|
| ntrneinex | ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrnei.o | . . . . 5 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
| 2 | ntrnei.f | . . . . 5 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
| 3 | ntrnei.r | . . . . 5 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
| 4 | 1, 2, 3 | ntrneif1o 44071 | . . . 4 ⊢ (𝜑 → 𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
| 5 | f1orel 6806 | . . . 4 ⊢ (𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) → Rel 𝐹) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → Rel 𝐹) |
| 7 | relelrn 5912 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐼𝐹𝑁) → 𝑁 ∈ ran 𝐹) | |
| 8 | 6, 3, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝑁 ∈ ran 𝐹) |
| 9 | dff1o2 6808 | . . . 4 ⊢ (𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) ↔ (𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) ∧ Fun ◡𝐹 ∧ ran 𝐹 = (𝒫 𝒫 𝐵 ↑m 𝐵))) | |
| 10 | 4, 9 | sylib 218 | . . 3 ⊢ (𝜑 → (𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) ∧ Fun ◡𝐹 ∧ ran 𝐹 = (𝒫 𝒫 𝐵 ↑m 𝐵))) |
| 11 | 10 | simp3d 1144 | . 2 ⊢ (𝜑 → ran 𝐹 = (𝒫 𝒫 𝐵 ↑m 𝐵)) |
| 12 | 8, 11 | eleqtrd 2831 | 1 ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 𝒫 cpw 4566 class class class wbr 5110 ↦ cmpt 5191 ◡ccnv 5640 ran crn 5642 Rel wrel 5646 Fun wfun 6508 Fn wfn 6509 –1-1-onto→wf1o 6513 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 ↑m cmap 8802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 |
| This theorem is referenced by: ntrneifv2 44076 ntrneifv3 44078 ntrneineine0lem 44079 ntrneineine1lem 44080 ntrneiel2 44082 clsneinex 44103 neicvgmex 44113 |
| Copyright terms: Public domain | W3C validator |