![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneinex | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the neighborhood function exists. (Contributed by RP, 29-May-2021.) |
Ref | Expression |
---|---|
ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
Ref | Expression |
---|---|
ntrneinex | ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑𝑚 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.o | . . . . 5 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
2 | ntrnei.f | . . . . 5 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
3 | ntrnei.r | . . . . 5 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
4 | 1, 2, 3 | ntrneif1o 39155 | . . . 4 ⊢ (𝜑 → 𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵)) |
5 | f1orel 6359 | . . . 4 ⊢ (𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵) → Rel 𝐹) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → Rel 𝐹) |
7 | relelrn 5563 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐼𝐹𝑁) → 𝑁 ∈ ran 𝐹) | |
8 | 6, 3, 7 | syl2anc 580 | . 2 ⊢ (𝜑 → 𝑁 ∈ ran 𝐹) |
9 | dff1o2 6361 | . . . 4 ⊢ (𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵) ↔ (𝐹 Fn (𝒫 𝐵 ↑𝑚 𝒫 𝐵) ∧ Fun ◡𝐹 ∧ ran 𝐹 = (𝒫 𝒫 𝐵 ↑𝑚 𝐵))) | |
10 | 4, 9 | sylib 210 | . . 3 ⊢ (𝜑 → (𝐹 Fn (𝒫 𝐵 ↑𝑚 𝒫 𝐵) ∧ Fun ◡𝐹 ∧ ran 𝐹 = (𝒫 𝒫 𝐵 ↑𝑚 𝐵))) |
11 | 10 | simp3d 1175 | . 2 ⊢ (𝜑 → ran 𝐹 = (𝒫 𝒫 𝐵 ↑𝑚 𝐵)) |
12 | 8, 11 | eleqtrd 2880 | 1 ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑𝑚 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 {crab 3093 Vcvv 3385 𝒫 cpw 4349 class class class wbr 4843 ↦ cmpt 4922 ◡ccnv 5311 ran crn 5313 Rel wrel 5317 Fun wfun 6095 Fn wfn 6096 –1-1-onto→wf1o 6100 ‘cfv 6101 (class class class)co 6878 ↦ cmpt2 6880 ↑𝑚 cmap 8095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-1st 7401 df-2nd 7402 df-map 8097 |
This theorem is referenced by: ntrneifv2 39160 ntrneifv3 39162 ntrneineine0lem 39163 ntrneineine1lem 39164 ntrneiel2 39166 clsneinex 39187 neicvgmex 39197 |
Copyright terms: Public domain | W3C validator |