![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneinex | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the neighborhood function exists. (Contributed by RP, 29-May-2021.) |
Ref | Expression |
---|---|
ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
Ref | Expression |
---|---|
ntrneinex | ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.o | . . . . 5 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
2 | ntrnei.f | . . . . 5 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
3 | ntrnei.r | . . . . 5 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
4 | 1, 2, 3 | ntrneif1o 44037 | . . . 4 ⊢ (𝜑 → 𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
5 | f1orel 6865 | . . . 4 ⊢ (𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) → Rel 𝐹) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → Rel 𝐹) |
7 | relelrn 5970 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐼𝐹𝑁) → 𝑁 ∈ ran 𝐹) | |
8 | 6, 3, 7 | syl2anc 583 | . 2 ⊢ (𝜑 → 𝑁 ∈ ran 𝐹) |
9 | dff1o2 6867 | . . . 4 ⊢ (𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) ↔ (𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) ∧ Fun ◡𝐹 ∧ ran 𝐹 = (𝒫 𝒫 𝐵 ↑m 𝐵))) | |
10 | 4, 9 | sylib 218 | . . 3 ⊢ (𝜑 → (𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) ∧ Fun ◡𝐹 ∧ ran 𝐹 = (𝒫 𝒫 𝐵 ↑m 𝐵))) |
11 | 10 | simp3d 1144 | . 2 ⊢ (𝜑 → ran 𝐹 = (𝒫 𝒫 𝐵 ↑m 𝐵)) |
12 | 8, 11 | eleqtrd 2846 | 1 ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 𝒫 cpw 4622 class class class wbr 5166 ↦ cmpt 5249 ◡ccnv 5699 ran crn 5701 Rel wrel 5705 Fun wfun 6567 Fn wfn 6568 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 ↑m cmap 8884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 |
This theorem is referenced by: ntrneifv2 44042 ntrneifv3 44044 ntrneineine0lem 44045 ntrneineine1lem 44046 ntrneiel2 44048 clsneinex 44069 neicvgmex 44079 |
Copyright terms: Public domain | W3C validator |