Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneinex Structured version   Visualization version   GIF version

Theorem ntrneinex 44067
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the neighborhood function exists. (Contributed by RP, 29-May-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneinex (𝜑𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝜑,𝑖,𝑗,𝑘,𝑙
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐼(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑙)

Proof of Theorem ntrneinex
StepHypRef Expression
1 ntrnei.o . . . . 5 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
2 ntrnei.f . . . . 5 𝐹 = (𝒫 𝐵𝑂𝐵)
3 ntrnei.r . . . . 5 (𝜑𝐼𝐹𝑁)
41, 2, 3ntrneif1o 44065 . . . 4 (𝜑𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
5 f1orel 6852 . . . 4 (𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) → Rel 𝐹)
64, 5syl 17 . . 3 (𝜑 → Rel 𝐹)
7 relelrn 5959 . . 3 ((Rel 𝐹𝐼𝐹𝑁) → 𝑁 ∈ ran 𝐹)
86, 3, 7syl2anc 584 . 2 (𝜑𝑁 ∈ ran 𝐹)
9 dff1o2 6854 . . . 4 (𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) ↔ (𝐹 Fn (𝒫 𝐵m 𝒫 𝐵) ∧ Fun 𝐹 ∧ ran 𝐹 = (𝒫 𝒫 𝐵m 𝐵)))
104, 9sylib 218 . . 3 (𝜑 → (𝐹 Fn (𝒫 𝐵m 𝒫 𝐵) ∧ Fun 𝐹 ∧ ran 𝐹 = (𝒫 𝒫 𝐵m 𝐵)))
1110simp3d 1143 . 2 (𝜑 → ran 𝐹 = (𝒫 𝒫 𝐵m 𝐵))
128, 11eleqtrd 2841 1 (𝜑𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  {crab 3433  Vcvv 3478  𝒫 cpw 4605   class class class wbr 5148  cmpt 5231  ccnv 5688  ran crn 5690  Rel wrel 5694  Fun wfun 6557   Fn wfn 6558  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  cmpo 7433  m cmap 8865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-map 8867
This theorem is referenced by:  ntrneifv2  44070  ntrneifv3  44072  ntrneineine0lem  44073  ntrneineine1lem  44074  ntrneiel2  44076  clsneinex  44097  neicvgmex  44107
  Copyright terms: Public domain W3C validator