Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneinex Structured version   Visualization version   GIF version

Theorem ntrneinex 43572
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the neighborhood function exists. (Contributed by RP, 29-May-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneinex (𝜑𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝜑,𝑖,𝑗,𝑘,𝑙
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐼(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑙)

Proof of Theorem ntrneinex
StepHypRef Expression
1 ntrnei.o . . . . 5 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
2 ntrnei.f . . . . 5 𝐹 = (𝒫 𝐵𝑂𝐵)
3 ntrnei.r . . . . 5 (𝜑𝐼𝐹𝑁)
41, 2, 3ntrneif1o 43570 . . . 4 (𝜑𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
5 f1orel 6837 . . . 4 (𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) → Rel 𝐹)
64, 5syl 17 . . 3 (𝜑 → Rel 𝐹)
7 relelrn 5941 . . 3 ((Rel 𝐹𝐼𝐹𝑁) → 𝑁 ∈ ran 𝐹)
86, 3, 7syl2anc 582 . 2 (𝜑𝑁 ∈ ran 𝐹)
9 dff1o2 6839 . . . 4 (𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) ↔ (𝐹 Fn (𝒫 𝐵m 𝒫 𝐵) ∧ Fun 𝐹 ∧ ran 𝐹 = (𝒫 𝒫 𝐵m 𝐵)))
104, 9sylib 217 . . 3 (𝜑 → (𝐹 Fn (𝒫 𝐵m 𝒫 𝐵) ∧ Fun 𝐹 ∧ ran 𝐹 = (𝒫 𝒫 𝐵m 𝐵)))
1110simp3d 1141 . 2 (𝜑 → ran 𝐹 = (𝒫 𝒫 𝐵m 𝐵))
128, 11eleqtrd 2827 1 (𝜑𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  wcel 2098  {crab 3419  Vcvv 3463  𝒫 cpw 4598   class class class wbr 5143  cmpt 5226  ccnv 5671  ran crn 5673  Rel wrel 5677  Fun wfun 6537   Fn wfn 6538  1-1-ontowf1o 6542  cfv 6543  (class class class)co 7416  cmpo 7418  m cmap 8843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7991  df-2nd 7992  df-map 8845
This theorem is referenced by:  ntrneifv2  43575  ntrneifv3  43577  ntrneineine0lem  43578  ntrneineine1lem  43579  ntrneiel2  43581  clsneinex  43602  neicvgmex  43612
  Copyright terms: Public domain W3C validator