| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oenfirn | Structured version Visualization version GIF version | ||
| Description: If the range of a one-to-one, onto function is finite, then the domain and range of the function are equinumerous. (Contributed by BTernaryTau, 9-Sep-2024.) |
| Ref | Expression |
|---|---|
| f1oenfirn | ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv 6776 | . . . . 5 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
| 2 | f1ofn 6765 | . . . . . 6 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹 Fn 𝐵) | |
| 3 | fnfi 9092 | . . . . . 6 ⊢ ((◡𝐹 Fn 𝐵 ∧ 𝐵 ∈ Fin) → ◡𝐹 ∈ Fin) | |
| 4 | 2, 3 | sylan 580 | . . . . 5 ⊢ ((◡𝐹:𝐵–1-1-onto→𝐴 ∧ 𝐵 ∈ Fin) → ◡𝐹 ∈ Fin) |
| 5 | 1, 4 | sylan 580 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ Fin) → ◡𝐹 ∈ Fin) |
| 6 | 5 | ancoms 458 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → ◡𝐹 ∈ Fin) |
| 7 | cnvfi 9090 | . . . 4 ⊢ (◡𝐹 ∈ Fin → ◡◡𝐹 ∈ Fin) | |
| 8 | f1orel 6767 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) | |
| 9 | dfrel2 6138 | . . . . . . 7 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
| 10 | 8, 9 | sylib 218 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡◡𝐹 = 𝐹) |
| 11 | 10 | eleq1d 2813 | . . . . 5 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡◡𝐹 ∈ Fin ↔ 𝐹 ∈ Fin)) |
| 12 | 11 | biimpac 478 | . . . 4 ⊢ ((◡◡𝐹 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐹 ∈ Fin) |
| 13 | 7, 12 | sylan 580 | . . 3 ⊢ ((◡𝐹 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐹 ∈ Fin) |
| 14 | 6, 13 | sylancom 588 | . 2 ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐹 ∈ Fin) |
| 15 | f1oen3g 8892 | . 2 ⊢ ((𝐹 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | |
| 16 | 14, 15 | sylancom 588 | 1 ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 ◡ccnv 5618 Rel wrel 5624 Fn wfn 6477 –1-1-onto→wf1o 6481 ≈ cen 8869 Fincfn 8872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-om 7800 df-1o 8388 df-en 8873 df-fin 8876 |
| This theorem is referenced by: ensymfib 9098 |
| Copyright terms: Public domain | W3C validator |