| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oenfirn | Structured version Visualization version GIF version | ||
| Description: If the range of a one-to-one, onto function is finite, then the domain and range of the function are equinumerous. (Contributed by BTernaryTau, 9-Sep-2024.) |
| Ref | Expression |
|---|---|
| f1oenfirn | ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv 6775 | . . . . 5 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
| 2 | f1ofn 6764 | . . . . . 6 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹 Fn 𝐵) | |
| 3 | fnfi 9087 | . . . . . 6 ⊢ ((◡𝐹 Fn 𝐵 ∧ 𝐵 ∈ Fin) → ◡𝐹 ∈ Fin) | |
| 4 | 2, 3 | sylan 580 | . . . . 5 ⊢ ((◡𝐹:𝐵–1-1-onto→𝐴 ∧ 𝐵 ∈ Fin) → ◡𝐹 ∈ Fin) |
| 5 | 1, 4 | sylan 580 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ Fin) → ◡𝐹 ∈ Fin) |
| 6 | 5 | ancoms 458 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → ◡𝐹 ∈ Fin) |
| 7 | cnvfi 9085 | . . . 4 ⊢ (◡𝐹 ∈ Fin → ◡◡𝐹 ∈ Fin) | |
| 8 | f1orel 6766 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) | |
| 9 | dfrel2 6136 | . . . . . . 7 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
| 10 | 8, 9 | sylib 218 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡◡𝐹 = 𝐹) |
| 11 | 10 | eleq1d 2816 | . . . . 5 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡◡𝐹 ∈ Fin ↔ 𝐹 ∈ Fin)) |
| 12 | 11 | biimpac 478 | . . . 4 ⊢ ((◡◡𝐹 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐹 ∈ Fin) |
| 13 | 7, 12 | sylan 580 | . . 3 ⊢ ((◡𝐹 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐹 ∈ Fin) |
| 14 | 6, 13 | sylancom 588 | . 2 ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐹 ∈ Fin) |
| 15 | f1oen3g 8889 | . 2 ⊢ ((𝐹 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | |
| 16 | 14, 15 | sylancom 588 | 1 ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ◡ccnv 5613 Rel wrel 5619 Fn wfn 6476 –1-1-onto→wf1o 6480 ≈ cen 8866 Fincfn 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1o 8385 df-en 8870 df-fin 8873 |
| This theorem is referenced by: ensymfib 9093 |
| Copyright terms: Public domain | W3C validator |