MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oenfirn Structured version   Visualization version   GIF version

Theorem f1oenfirn 9206
Description: If the range of a one-to-one, onto function is finite, then the domain and range of the function are equinumerous. (Contributed by BTernaryTau, 9-Sep-2024.)
Assertion
Ref Expression
f1oenfirn ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)

Proof of Theorem f1oenfirn
StepHypRef Expression
1 f1ocnv 6846 . . . . 5 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
2 f1ofn 6835 . . . . . 6 (𝐹:𝐵1-1-onto𝐴𝐹 Fn 𝐵)
3 fnfi 9204 . . . . . 6 ((𝐹 Fn 𝐵𝐵 ∈ Fin) → 𝐹 ∈ Fin)
42, 3sylan 578 . . . . 5 ((𝐹:𝐵1-1-onto𝐴𝐵 ∈ Fin) → 𝐹 ∈ Fin)
51, 4sylan 578 . . . 4 ((𝐹:𝐴1-1-onto𝐵𝐵 ∈ Fin) → 𝐹 ∈ Fin)
65ancoms 457 . . 3 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐹 ∈ Fin)
7 cnvfi 9203 . . . 4 (𝐹 ∈ Fin → 𝐹 ∈ Fin)
8 f1orel 6837 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵 → Rel 𝐹)
9 dfrel2 6188 . . . . . . 7 (Rel 𝐹𝐹 = 𝐹)
108, 9sylib 217 . . . . . 6 (𝐹:𝐴1-1-onto𝐵𝐹 = 𝐹)
1110eleq1d 2810 . . . . 5 (𝐹:𝐴1-1-onto𝐵 → (𝐹 ∈ Fin ↔ 𝐹 ∈ Fin))
1211biimpac 477 . . . 4 ((𝐹 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐹 ∈ Fin)
137, 12sylan 578 . . 3 ((𝐹 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐹 ∈ Fin)
146, 13sylancom 586 . 2 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐹 ∈ Fin)
15 f1oen3g 8985 . 2 ((𝐹 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
1614, 15sylancom 586 1 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098   class class class wbr 5143  ccnv 5671  Rel wrel 5677   Fn wfn 6538  1-1-ontowf1o 6542  cen 8959  Fincfn 8962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-om 7869  df-1o 8485  df-en 8963  df-fin 8966
This theorem is referenced by:  ensymfib  9210
  Copyright terms: Public domain W3C validator