MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oenfirn Structured version   Visualization version   GIF version

Theorem f1oenfirn 9094
Description: If the range of a one-to-one, onto function is finite, then the domain and range of the function are equinumerous. (Contributed by BTernaryTau, 9-Sep-2024.)
Assertion
Ref Expression
f1oenfirn ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)

Proof of Theorem f1oenfirn
StepHypRef Expression
1 f1ocnv 6776 . . . . 5 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
2 f1ofn 6765 . . . . . 6 (𝐹:𝐵1-1-onto𝐴𝐹 Fn 𝐵)
3 fnfi 9092 . . . . . 6 ((𝐹 Fn 𝐵𝐵 ∈ Fin) → 𝐹 ∈ Fin)
42, 3sylan 580 . . . . 5 ((𝐹:𝐵1-1-onto𝐴𝐵 ∈ Fin) → 𝐹 ∈ Fin)
51, 4sylan 580 . . . 4 ((𝐹:𝐴1-1-onto𝐵𝐵 ∈ Fin) → 𝐹 ∈ Fin)
65ancoms 458 . . 3 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐹 ∈ Fin)
7 cnvfi 9090 . . . 4 (𝐹 ∈ Fin → 𝐹 ∈ Fin)
8 f1orel 6767 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵 → Rel 𝐹)
9 dfrel2 6138 . . . . . . 7 (Rel 𝐹𝐹 = 𝐹)
108, 9sylib 218 . . . . . 6 (𝐹:𝐴1-1-onto𝐵𝐹 = 𝐹)
1110eleq1d 2813 . . . . 5 (𝐹:𝐴1-1-onto𝐵 → (𝐹 ∈ Fin ↔ 𝐹 ∈ Fin))
1211biimpac 478 . . . 4 ((𝐹 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐹 ∈ Fin)
137, 12sylan 580 . . 3 ((𝐹 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐹 ∈ Fin)
146, 13sylancom 588 . 2 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐹 ∈ Fin)
15 f1oen3g 8892 . 2 ((𝐹 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
1614, 15sylancom 588 1 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5092  ccnv 5618  Rel wrel 5624   Fn wfn 6477  1-1-ontowf1o 6481  cen 8869  Fincfn 8872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-om 7800  df-1o 8388  df-en 8873  df-fin 8876
This theorem is referenced by:  ensymfib  9098
  Copyright terms: Public domain W3C validator