MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oenfirn Structured version   Visualization version   GIF version

Theorem f1oenfirn 9183
Description: If the range of a one-to-one, onto function is finite, then the domain and range of the function are equinumerous. (Contributed by BTernaryTau, 9-Sep-2024.)
Assertion
Ref Expression
f1oenfirn ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)

Proof of Theorem f1oenfirn
StepHypRef Expression
1 f1ocnv 6846 . . . . 5 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
2 f1ofn 6835 . . . . . 6 (𝐹:𝐵1-1-onto𝐴𝐹 Fn 𝐵)
3 fnfi 9181 . . . . . 6 ((𝐹 Fn 𝐵𝐵 ∈ Fin) → 𝐹 ∈ Fin)
42, 3sylan 581 . . . . 5 ((𝐹:𝐵1-1-onto𝐴𝐵 ∈ Fin) → 𝐹 ∈ Fin)
51, 4sylan 581 . . . 4 ((𝐹:𝐴1-1-onto𝐵𝐵 ∈ Fin) → 𝐹 ∈ Fin)
65ancoms 460 . . 3 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐹 ∈ Fin)
7 cnvfi 9180 . . . 4 (𝐹 ∈ Fin → 𝐹 ∈ Fin)
8 f1orel 6837 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵 → Rel 𝐹)
9 dfrel2 6189 . . . . . . 7 (Rel 𝐹𝐹 = 𝐹)
108, 9sylib 217 . . . . . 6 (𝐹:𝐴1-1-onto𝐵𝐹 = 𝐹)
1110eleq1d 2819 . . . . 5 (𝐹:𝐴1-1-onto𝐵 → (𝐹 ∈ Fin ↔ 𝐹 ∈ Fin))
1211biimpac 480 . . . 4 ((𝐹 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐹 ∈ Fin)
137, 12sylan 581 . . 3 ((𝐹 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐹 ∈ Fin)
146, 13sylancom 589 . 2 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐹 ∈ Fin)
15 f1oen3g 8962 . 2 ((𝐹 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
1614, 15sylancom 589 1 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107   class class class wbr 5149  ccnv 5676  Rel wrel 5682   Fn wfn 6539  1-1-ontowf1o 6543  cen 8936  Fincfn 8939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-om 7856  df-1o 8466  df-en 8940  df-fin 8943
This theorem is referenced by:  ensymfib  9187
  Copyright terms: Public domain W3C validator