| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oenfirn | Structured version Visualization version GIF version | ||
| Description: If the range of a one-to-one, onto function is finite, then the domain and range of the function are equinumerous. (Contributed by BTernaryTau, 9-Sep-2024.) |
| Ref | Expression |
|---|---|
| f1oenfirn | ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv 6830 | . . . . 5 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
| 2 | f1ofn 6819 | . . . . . 6 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹 Fn 𝐵) | |
| 3 | fnfi 9192 | . . . . . 6 ⊢ ((◡𝐹 Fn 𝐵 ∧ 𝐵 ∈ Fin) → ◡𝐹 ∈ Fin) | |
| 4 | 2, 3 | sylan 580 | . . . . 5 ⊢ ((◡𝐹:𝐵–1-1-onto→𝐴 ∧ 𝐵 ∈ Fin) → ◡𝐹 ∈ Fin) |
| 5 | 1, 4 | sylan 580 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ Fin) → ◡𝐹 ∈ Fin) |
| 6 | 5 | ancoms 458 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → ◡𝐹 ∈ Fin) |
| 7 | cnvfi 9190 | . . . 4 ⊢ (◡𝐹 ∈ Fin → ◡◡𝐹 ∈ Fin) | |
| 8 | f1orel 6821 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) | |
| 9 | dfrel2 6178 | . . . . . . 7 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
| 10 | 8, 9 | sylib 218 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡◡𝐹 = 𝐹) |
| 11 | 10 | eleq1d 2819 | . . . . 5 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡◡𝐹 ∈ Fin ↔ 𝐹 ∈ Fin)) |
| 12 | 11 | biimpac 478 | . . . 4 ⊢ ((◡◡𝐹 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐹 ∈ Fin) |
| 13 | 7, 12 | sylan 580 | . . 3 ⊢ ((◡𝐹 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐹 ∈ Fin) |
| 14 | 6, 13 | sylancom 588 | . 2 ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐹 ∈ Fin) |
| 15 | f1oen3g 8981 | . 2 ⊢ ((𝐹 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | |
| 16 | 14, 15 | sylancom 588 | 1 ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ◡ccnv 5653 Rel wrel 5659 Fn wfn 6526 –1-1-onto→wf1o 6530 ≈ cen 8956 Fincfn 8959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-om 7862 df-1o 8480 df-en 8960 df-fin 8963 |
| This theorem is referenced by: ensymfib 9198 |
| Copyright terms: Public domain | W3C validator |