MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oenfirn Structured version   Visualization version   GIF version

Theorem f1oenfirn 9144
Description: If the range of a one-to-one, onto function is finite, then the domain and range of the function are equinumerous. (Contributed by BTernaryTau, 9-Sep-2024.)
Assertion
Ref Expression
f1oenfirn ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)

Proof of Theorem f1oenfirn
StepHypRef Expression
1 f1ocnv 6812 . . . . 5 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
2 f1ofn 6801 . . . . . 6 (𝐹:𝐵1-1-onto𝐴𝐹 Fn 𝐵)
3 fnfi 9142 . . . . . 6 ((𝐹 Fn 𝐵𝐵 ∈ Fin) → 𝐹 ∈ Fin)
42, 3sylan 580 . . . . 5 ((𝐹:𝐵1-1-onto𝐴𝐵 ∈ Fin) → 𝐹 ∈ Fin)
51, 4sylan 580 . . . 4 ((𝐹:𝐴1-1-onto𝐵𝐵 ∈ Fin) → 𝐹 ∈ Fin)
65ancoms 458 . . 3 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐹 ∈ Fin)
7 cnvfi 9140 . . . 4 (𝐹 ∈ Fin → 𝐹 ∈ Fin)
8 f1orel 6803 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵 → Rel 𝐹)
9 dfrel2 6162 . . . . . . 7 (Rel 𝐹𝐹 = 𝐹)
108, 9sylib 218 . . . . . 6 (𝐹:𝐴1-1-onto𝐵𝐹 = 𝐹)
1110eleq1d 2813 . . . . 5 (𝐹:𝐴1-1-onto𝐵 → (𝐹 ∈ Fin ↔ 𝐹 ∈ Fin))
1211biimpac 478 . . . 4 ((𝐹 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐹 ∈ Fin)
137, 12sylan 580 . . 3 ((𝐹 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐹 ∈ Fin)
146, 13sylancom 588 . 2 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐹 ∈ Fin)
15 f1oen3g 8938 . 2 ((𝐹 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
1614, 15sylancom 588 1 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5107  ccnv 5637  Rel wrel 5643   Fn wfn 6506  1-1-ontowf1o 6510  cen 8915  Fincfn 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-en 8919  df-fin 8922
This theorem is referenced by:  ensymfib  9148
  Copyright terms: Public domain W3C validator