Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrncnvnid | Structured version Visualization version GIF version |
Description: If a translation is different from the identity, so is its converse. (Contributed by NM, 17-Jun-2013.) |
Ref | Expression |
---|---|
ltrn1o.b | ⊢ 𝐵 = (Base‘𝐾) |
ltrn1o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrn1o.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrncnvnid | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ◡𝐹 ≠ ( I ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1139 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ≠ ( I ↾ 𝐵)) | |
2 | ltrn1o.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝐾) | |
3 | ltrn1o.h | . . . . . . . . . 10 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | ltrn1o.t | . . . . . . . . . 10 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | 2, 3, 4 | ltrn1o 37784 | . . . . . . . . 9 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) |
6 | 5 | 3adant3 1133 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐹:𝐵–1-1-onto→𝐵) |
7 | f1orel 6624 | . . . . . . . 8 ⊢ (𝐹:𝐵–1-1-onto→𝐵 → Rel 𝐹) | |
8 | 6, 7 | syl 17 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → Rel 𝐹) |
9 | dfrel2 6022 | . . . . . . 7 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
10 | 8, 9 | sylib 221 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ◡◡𝐹 = 𝐹) |
11 | cnveq 5717 | . . . . . 6 ⊢ (◡𝐹 = ( I ↾ 𝐵) → ◡◡𝐹 = ◡( I ↾ 𝐵)) | |
12 | 10, 11 | sylan9req 2795 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ ◡𝐹 = ( I ↾ 𝐵)) → 𝐹 = ◡( I ↾ 𝐵)) |
13 | cnvresid 6419 | . . . . 5 ⊢ ◡( I ↾ 𝐵) = ( I ↾ 𝐵) | |
14 | 12, 13 | eqtrdi 2790 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ ◡𝐹 = ( I ↾ 𝐵)) → 𝐹 = ( I ↾ 𝐵)) |
15 | 14 | ex 416 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (◡𝐹 = ( I ↾ 𝐵) → 𝐹 = ( I ↾ 𝐵))) |
16 | 15 | necon3d 2956 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝐹 ≠ ( I ↾ 𝐵) → ◡𝐹 ≠ ( I ↾ 𝐵))) |
17 | 1, 16 | mpd 15 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ◡𝐹 ≠ ( I ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ≠ wne 2935 I cid 5429 ◡ccnv 5525 ↾ cres 5528 Rel wrel 5531 –1-1-onto→wf1o 6339 ‘cfv 6340 Basecbs 16589 HLchlt 37010 LHypclh 37644 LTrncltrn 37761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7482 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7176 df-oprab 7177 df-mpo 7178 df-map 8442 df-laut 37649 df-ldil 37764 df-ltrn 37765 |
This theorem is referenced by: cdlemh2 38476 cdlemh 38477 cdlemkfid1N 38581 |
Copyright terms: Public domain | W3C validator |