|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrncnvnid | Structured version Visualization version GIF version | ||
| Description: If a translation is different from the identity, so is its converse. (Contributed by NM, 17-Jun-2013.) | 
| Ref | Expression | 
|---|---|
| ltrn1o.b | ⊢ 𝐵 = (Base‘𝐾) | 
| ltrn1o.h | ⊢ 𝐻 = (LHyp‘𝐾) | 
| ltrn1o.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| Ref | Expression | 
|---|---|
| ltrncnvnid | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ◡𝐹 ≠ ( I ↾ 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp3 1139 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ≠ ( I ↾ 𝐵)) | |
| 2 | ltrn1o.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | ltrn1o.h | . . . . . . . . . 10 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | ltrn1o.t | . . . . . . . . . 10 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 5 | 2, 3, 4 | ltrn1o 40126 | . . . . . . . . 9 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) | 
| 6 | 5 | 3adant3 1133 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐹:𝐵–1-1-onto→𝐵) | 
| 7 | f1orel 6851 | . . . . . . . 8 ⊢ (𝐹:𝐵–1-1-onto→𝐵 → Rel 𝐹) | |
| 8 | 6, 7 | syl 17 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → Rel 𝐹) | 
| 9 | dfrel2 6209 | . . . . . . 7 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
| 10 | 8, 9 | sylib 218 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ◡◡𝐹 = 𝐹) | 
| 11 | cnveq 5884 | . . . . . 6 ⊢ (◡𝐹 = ( I ↾ 𝐵) → ◡◡𝐹 = ◡( I ↾ 𝐵)) | |
| 12 | 10, 11 | sylan9req 2798 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ ◡𝐹 = ( I ↾ 𝐵)) → 𝐹 = ◡( I ↾ 𝐵)) | 
| 13 | cnvresid 6645 | . . . . 5 ⊢ ◡( I ↾ 𝐵) = ( I ↾ 𝐵) | |
| 14 | 12, 13 | eqtrdi 2793 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ ◡𝐹 = ( I ↾ 𝐵)) → 𝐹 = ( I ↾ 𝐵)) | 
| 15 | 14 | ex 412 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (◡𝐹 = ( I ↾ 𝐵) → 𝐹 = ( I ↾ 𝐵))) | 
| 16 | 15 | necon3d 2961 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝐹 ≠ ( I ↾ 𝐵) → ◡𝐹 ≠ ( I ↾ 𝐵))) | 
| 17 | 1, 16 | mpd 15 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ◡𝐹 ≠ ( I ↾ 𝐵)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 I cid 5577 ◡ccnv 5684 ↾ cres 5687 Rel wrel 5690 –1-1-onto→wf1o 6560 ‘cfv 6561 Basecbs 17247 HLchlt 39351 LHypclh 39986 LTrncltrn 40103 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8868 df-laut 39991 df-ldil 40106 df-ltrn 40107 | 
| This theorem is referenced by: cdlemh2 40818 cdlemh 40819 cdlemkfid1N 40923 | 
| Copyright terms: Public domain | W3C validator |