Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncnvnid Structured version   Visualization version   GIF version

Theorem ltrncnvnid 38068
Description: If a translation is different from the identity, so is its converse. (Contributed by NM, 17-Jun-2013.)
Hypotheses
Ref Expression
ltrn1o.b 𝐵 = (Base‘𝐾)
ltrn1o.h 𝐻 = (LHyp‘𝐾)
ltrn1o.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrncnvnid (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ≠ ( I ↾ 𝐵))

Proof of Theorem ltrncnvnid
StepHypRef Expression
1 simp3 1136 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ≠ ( I ↾ 𝐵))
2 ltrn1o.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
3 ltrn1o.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
4 ltrn1o.t . . . . . . . . . 10 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrn1o 38065 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
653adant3 1130 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → 𝐹:𝐵1-1-onto𝐵)
7 f1orel 6703 . . . . . . . 8 (𝐹:𝐵1-1-onto𝐵 → Rel 𝐹)
86, 7syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → Rel 𝐹)
9 dfrel2 6081 . . . . . . 7 (Rel 𝐹𝐹 = 𝐹)
108, 9sylib 217 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 = 𝐹)
11 cnveq 5771 . . . . . 6 (𝐹 = ( I ↾ 𝐵) → 𝐹 = ( I ↾ 𝐵))
1210, 11sylan9req 2800 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐹 = ( I ↾ 𝐵))
13 cnvresid 6497 . . . . 5 ( I ↾ 𝐵) = ( I ↾ 𝐵)
1412, 13eqtrdi 2795 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐹 = ( I ↾ 𝐵))
1514ex 412 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → (𝐹 = ( I ↾ 𝐵) → 𝐹 = ( I ↾ 𝐵)))
1615necon3d 2963 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → (𝐹 ≠ ( I ↾ 𝐵) → 𝐹 ≠ ( I ↾ 𝐵)))
171, 16mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ≠ ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   I cid 5479  ccnv 5579  cres 5582  Rel wrel 5585  1-1-ontowf1o 6417  cfv 6418  Basecbs 16840  HLchlt 37291  LHypclh 37925  LTrncltrn 38042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-laut 37930  df-ldil 38045  df-ltrn 38046
This theorem is referenced by:  cdlemh2  38757  cdlemh  38758  cdlemkfid1N  38862
  Copyright terms: Public domain W3C validator