Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncnvnid Structured version   Visualization version   GIF version

Theorem ltrncnvnid 40110
Description: If a translation is different from the identity, so is its converse. (Contributed by NM, 17-Jun-2013.)
Hypotheses
Ref Expression
ltrn1o.b 𝐵 = (Base‘𝐾)
ltrn1o.h 𝐻 = (LHyp‘𝐾)
ltrn1o.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrncnvnid (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ≠ ( I ↾ 𝐵))

Proof of Theorem ltrncnvnid
StepHypRef Expression
1 simp3 1137 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ≠ ( I ↾ 𝐵))
2 ltrn1o.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
3 ltrn1o.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
4 ltrn1o.t . . . . . . . . . 10 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrn1o 40107 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
653adant3 1131 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → 𝐹:𝐵1-1-onto𝐵)
7 f1orel 6852 . . . . . . . 8 (𝐹:𝐵1-1-onto𝐵 → Rel 𝐹)
86, 7syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → Rel 𝐹)
9 dfrel2 6211 . . . . . . 7 (Rel 𝐹𝐹 = 𝐹)
108, 9sylib 218 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 = 𝐹)
11 cnveq 5887 . . . . . 6 (𝐹 = ( I ↾ 𝐵) → 𝐹 = ( I ↾ 𝐵))
1210, 11sylan9req 2796 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐹 = ( I ↾ 𝐵))
13 cnvresid 6647 . . . . 5 ( I ↾ 𝐵) = ( I ↾ 𝐵)
1412, 13eqtrdi 2791 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐹 = ( I ↾ 𝐵))
1514ex 412 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → (𝐹 = ( I ↾ 𝐵) → 𝐹 = ( I ↾ 𝐵)))
1615necon3d 2959 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → (𝐹 ≠ ( I ↾ 𝐵) → 𝐹 ≠ ( I ↾ 𝐵)))
171, 16mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ≠ ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938   I cid 5582  ccnv 5688  cres 5691  Rel wrel 5694  1-1-ontowf1o 6562  cfv 6563  Basecbs 17245  HLchlt 39332  LHypclh 39967  LTrncltrn 40084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-laut 39972  df-ldil 40087  df-ltrn 40088
This theorem is referenced by:  cdlemh2  40799  cdlemh  40800  cdlemkfid1N  40904
  Copyright terms: Public domain W3C validator