| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrncnvnid | Structured version Visualization version GIF version | ||
| Description: If a translation is different from the identity, so is its converse. (Contributed by NM, 17-Jun-2013.) |
| Ref | Expression |
|---|---|
| ltrn1o.b | ⊢ 𝐵 = (Base‘𝐾) |
| ltrn1o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ltrn1o.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| ltrncnvnid | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ◡𝐹 ≠ ( I ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ≠ ( I ↾ 𝐵)) | |
| 2 | ltrn1o.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | ltrn1o.h | . . . . . . . . . 10 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | ltrn1o.t | . . . . . . . . . 10 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 5 | 2, 3, 4 | ltrn1o 40222 | . . . . . . . . 9 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) |
| 6 | 5 | 3adant3 1132 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐹:𝐵–1-1-onto→𝐵) |
| 7 | f1orel 6766 | . . . . . . . 8 ⊢ (𝐹:𝐵–1-1-onto→𝐵 → Rel 𝐹) | |
| 8 | 6, 7 | syl 17 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → Rel 𝐹) |
| 9 | dfrel2 6136 | . . . . . . 7 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
| 10 | 8, 9 | sylib 218 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ◡◡𝐹 = 𝐹) |
| 11 | cnveq 5812 | . . . . . 6 ⊢ (◡𝐹 = ( I ↾ 𝐵) → ◡◡𝐹 = ◡( I ↾ 𝐵)) | |
| 12 | 10, 11 | sylan9req 2787 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ ◡𝐹 = ( I ↾ 𝐵)) → 𝐹 = ◡( I ↾ 𝐵)) |
| 13 | cnvresid 6560 | . . . . 5 ⊢ ◡( I ↾ 𝐵) = ( I ↾ 𝐵) | |
| 14 | 12, 13 | eqtrdi 2782 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ ◡𝐹 = ( I ↾ 𝐵)) → 𝐹 = ( I ↾ 𝐵)) |
| 15 | 14 | ex 412 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (◡𝐹 = ( I ↾ 𝐵) → 𝐹 = ( I ↾ 𝐵))) |
| 16 | 15 | necon3d 2949 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝐹 ≠ ( I ↾ 𝐵) → ◡𝐹 ≠ ( I ↾ 𝐵))) |
| 17 | 1, 16 | mpd 15 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ◡𝐹 ≠ ( I ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 I cid 5508 ◡ccnv 5613 ↾ cres 5616 Rel wrel 5619 –1-1-onto→wf1o 6480 ‘cfv 6481 Basecbs 17120 HLchlt 39448 LHypclh 40082 LTrncltrn 40199 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-laut 40087 df-ldil 40202 df-ltrn 40203 |
| This theorem is referenced by: cdlemh2 40914 cdlemh 40915 cdlemkfid1N 41019 |
| Copyright terms: Public domain | W3C validator |