Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncnvnid Structured version   Visualization version   GIF version

Theorem ltrncnvnid 40129
Description: If a translation is different from the identity, so is its converse. (Contributed by NM, 17-Jun-2013.)
Hypotheses
Ref Expression
ltrn1o.b 𝐵 = (Base‘𝐾)
ltrn1o.h 𝐻 = (LHyp‘𝐾)
ltrn1o.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrncnvnid (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ≠ ( I ↾ 𝐵))

Proof of Theorem ltrncnvnid
StepHypRef Expression
1 simp3 1139 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ≠ ( I ↾ 𝐵))
2 ltrn1o.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
3 ltrn1o.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
4 ltrn1o.t . . . . . . . . . 10 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrn1o 40126 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
653adant3 1133 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → 𝐹:𝐵1-1-onto𝐵)
7 f1orel 6851 . . . . . . . 8 (𝐹:𝐵1-1-onto𝐵 → Rel 𝐹)
86, 7syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → Rel 𝐹)
9 dfrel2 6209 . . . . . . 7 (Rel 𝐹𝐹 = 𝐹)
108, 9sylib 218 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 = 𝐹)
11 cnveq 5884 . . . . . 6 (𝐹 = ( I ↾ 𝐵) → 𝐹 = ( I ↾ 𝐵))
1210, 11sylan9req 2798 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐹 = ( I ↾ 𝐵))
13 cnvresid 6645 . . . . 5 ( I ↾ 𝐵) = ( I ↾ 𝐵)
1412, 13eqtrdi 2793 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐹 = ( I ↾ 𝐵))
1514ex 412 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → (𝐹 = ( I ↾ 𝐵) → 𝐹 = ( I ↾ 𝐵)))
1615necon3d 2961 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → (𝐹 ≠ ( I ↾ 𝐵) → 𝐹 ≠ ( I ↾ 𝐵)))
171, 16mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ≠ ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940   I cid 5577  ccnv 5684  cres 5687  Rel wrel 5690  1-1-ontowf1o 6560  cfv 6561  Basecbs 17247  HLchlt 39351  LHypclh 39986  LTrncltrn 40103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8868  df-laut 39991  df-ldil 40106  df-ltrn 40107
This theorem is referenced by:  cdlemh2  40818  cdlemh  40819  cdlemkfid1N  40923
  Copyright terms: Public domain W3C validator