Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncnvnid Structured version   Visualization version   GIF version

Theorem ltrncnvnid 40104
Description: If a translation is different from the identity, so is its converse. (Contributed by NM, 17-Jun-2013.)
Hypotheses
Ref Expression
ltrn1o.b 𝐵 = (Base‘𝐾)
ltrn1o.h 𝐻 = (LHyp‘𝐾)
ltrn1o.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrncnvnid (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ≠ ( I ↾ 𝐵))

Proof of Theorem ltrncnvnid
StepHypRef Expression
1 simp3 1138 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ≠ ( I ↾ 𝐵))
2 ltrn1o.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
3 ltrn1o.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
4 ltrn1o.t . . . . . . . . . 10 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrn1o 40101 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
653adant3 1132 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → 𝐹:𝐵1-1-onto𝐵)
7 f1orel 6831 . . . . . . . 8 (𝐹:𝐵1-1-onto𝐵 → Rel 𝐹)
86, 7syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → Rel 𝐹)
9 dfrel2 6189 . . . . . . 7 (Rel 𝐹𝐹 = 𝐹)
108, 9sylib 218 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 = 𝐹)
11 cnveq 5864 . . . . . 6 (𝐹 = ( I ↾ 𝐵) → 𝐹 = ( I ↾ 𝐵))
1210, 11sylan9req 2790 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐹 = ( I ↾ 𝐵))
13 cnvresid 6625 . . . . 5 ( I ↾ 𝐵) = ( I ↾ 𝐵)
1412, 13eqtrdi 2785 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐹 = ( I ↾ 𝐵))
1514ex 412 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → (𝐹 = ( I ↾ 𝐵) → 𝐹 = ( I ↾ 𝐵)))
1615necon3d 2952 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → (𝐹 ≠ ( I ↾ 𝐵) → 𝐹 ≠ ( I ↾ 𝐵)))
171, 16mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ≠ ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931   I cid 5557  ccnv 5664  cres 5667  Rel wrel 5670  1-1-ontowf1o 6540  cfv 6541  Basecbs 17230  HLchlt 39326  LHypclh 39961  LTrncltrn 40078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-map 8850  df-laut 39966  df-ldil 40081  df-ltrn 40082
This theorem is referenced by:  cdlemh2  40793  cdlemh  40794  cdlemkfid1N  40898
  Copyright terms: Public domain W3C validator