MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmphaushmeo Structured version   Visualization version   GIF version

Theorem cmphaushmeo 23151
Description: A continuous bijection from a compact space to a Hausdorff space is a homeomorphism. (Contributed by Mario Carneiro, 17-Feb-2015.)
Hypotheses
Ref Expression
cmphaushmeo.1 𝑋 = 𝐽
cmphaushmeo.2 𝑌 = 𝐾
Assertion
Ref Expression
cmphaushmeo ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹:𝑋1-1-onto𝑌))

Proof of Theorem cmphaushmeo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cmphaushmeo.1 . . 3 𝑋 = 𝐽
2 cmphaushmeo.2 . . 3 𝑌 = 𝐾
31, 2hmeof1o 23115 . 2 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋1-1-onto𝑌)
4 f1ocnv 6796 . . . . . . . 8 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
5 f1of 6784 . . . . . . . 8 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
64, 5syl 17 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌𝑋)
76a1i 11 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋1-1-onto𝑌𝐹:𝑌𝑋))
8 f1orel 6787 . . . . . . . . . . . 12 (𝐹:𝑋1-1-onto𝑌 → Rel 𝐹)
98ad2antll 727 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → Rel 𝐹)
10 dfrel2 6141 . . . . . . . . . . 11 (Rel 𝐹𝐹 = 𝐹)
119, 10sylib 217 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → 𝐹 = 𝐹)
1211imaeq1d 6012 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → (𝐹𝑥) = (𝐹𝑥))
13 simp2 1137 . . . . . . . . . . 11 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Haus)
1413adantr 481 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → 𝐾 ∈ Haus)
15 imassrn 6024 . . . . . . . . . . 11 (𝐹𝑥) ⊆ ran 𝐹
16 f1ofo 6791 . . . . . . . . . . . . 13 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋onto𝑌)
1716ad2antll 727 . . . . . . . . . . . 12 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → 𝐹:𝑋onto𝑌)
18 forn 6759 . . . . . . . . . . . 12 (𝐹:𝑋onto𝑌 → ran 𝐹 = 𝑌)
1917, 18syl 17 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → ran 𝐹 = 𝑌)
2015, 19sseqtrid 3996 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → (𝐹𝑥) ⊆ 𝑌)
21 simpl3 1193 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → 𝐹 ∈ (𝐽 Cn 𝐾))
22 simp1 1136 . . . . . . . . . . . . 13 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Comp)
2322adantr 481 . . . . . . . . . . . 12 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → 𝐽 ∈ Comp)
24 simprl 769 . . . . . . . . . . . 12 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → 𝑥 ∈ (Clsd‘𝐽))
25 cmpcld 22753 . . . . . . . . . . . 12 ((𝐽 ∈ Comp ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝐽t 𝑥) ∈ Comp)
2623, 24, 25syl2anc 584 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → (𝐽t 𝑥) ∈ Comp)
27 imacmp 22748 . . . . . . . . . . 11 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝑥) ∈ Comp) → (𝐾t (𝐹𝑥)) ∈ Comp)
2821, 26, 27syl2anc 584 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → (𝐾t (𝐹𝑥)) ∈ Comp)
292hauscmp 22758 . . . . . . . . . 10 ((𝐾 ∈ Haus ∧ (𝐹𝑥) ⊆ 𝑌 ∧ (𝐾t (𝐹𝑥)) ∈ Comp) → (𝐹𝑥) ∈ (Clsd‘𝐾))
3014, 20, 28, 29syl3anc 1371 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → (𝐹𝑥) ∈ (Clsd‘𝐾))
3112, 30eqeltrd 2838 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → (𝐹𝑥) ∈ (Clsd‘𝐾))
3231expr 457 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝐹:𝑋1-1-onto𝑌 → (𝐹𝑥) ∈ (Clsd‘𝐾)))
3332ralrimdva 3151 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋1-1-onto𝑌 → ∀𝑥 ∈ (Clsd‘𝐽)(𝐹𝑥) ∈ (Clsd‘𝐾)))
347, 33jcad 513 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋1-1-onto𝑌 → (𝐹:𝑌𝑋 ∧ ∀𝑥 ∈ (Clsd‘𝐽)(𝐹𝑥) ∈ (Clsd‘𝐾))))
35 haustop 22682 . . . . . . . 8 (𝐾 ∈ Haus → 𝐾 ∈ Top)
3613, 35syl 17 . . . . . . 7 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top)
372toptopon 22266 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
3836, 37sylib 217 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ (TopOn‘𝑌))
39 cmptop 22746 . . . . . . . 8 (𝐽 ∈ Comp → 𝐽 ∈ Top)
4022, 39syl 17 . . . . . . 7 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top)
411toptopon 22266 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
4240, 41sylib 217 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ (TopOn‘𝑋))
43 iscncl 22620 . . . . . 6 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐹 ∈ (𝐾 Cn 𝐽) ↔ (𝐹:𝑌𝑋 ∧ ∀𝑥 ∈ (Clsd‘𝐽)(𝐹𝑥) ∈ (Clsd‘𝐾))))
4438, 42, 43syl2anc 584 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∈ (𝐾 Cn 𝐽) ↔ (𝐹:𝑌𝑋 ∧ ∀𝑥 ∈ (Clsd‘𝐽)(𝐹𝑥) ∈ (Clsd‘𝐾))))
4534, 44sylibrd 258 . . . 4 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝐾 Cn 𝐽)))
46 simp3 1138 . . . 4 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝐽 Cn 𝐾))
4745, 46jctild 526 . . 3 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋1-1-onto𝑌 → (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽))))
48 ishmeo 23110 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)))
4947, 48syl6ibr 251 . 2 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝐽Homeo𝐾)))
503, 49impbid2 225 1 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹:𝑋1-1-onto𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wss 3910   cuni 4865  ccnv 5632  ran crn 5634  cima 5636  Rel wrel 5638  wf 6492  ontowfo 6494  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  t crest 17302  Topctop 22242  TopOnctopon 22259  Clsdccld 22367   Cn ccn 22575  Hauscha 22659  Compccmp 22737  Homeochmeo 23104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-fin 8887  df-fi 9347  df-rest 17304  df-topgen 17325  df-top 22243  df-topon 22260  df-bases 22296  df-cld 22370  df-cls 22372  df-cn 22578  df-haus 22666  df-cmp 22738  df-hmeo 23106
This theorem is referenced by:  cncfcnvcn  24288
  Copyright terms: Public domain W3C validator