MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmphaushmeo Structured version   Visualization version   GIF version

Theorem cmphaushmeo 22405
Description: A continuous bijection from a compact space to a Hausdorff space is a homeomorphism. (Contributed by Mario Carneiro, 17-Feb-2015.)
Hypotheses
Ref Expression
cmphaushmeo.1 𝑋 = 𝐽
cmphaushmeo.2 𝑌 = 𝐾
Assertion
Ref Expression
cmphaushmeo ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹:𝑋1-1-onto𝑌))

Proof of Theorem cmphaushmeo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cmphaushmeo.1 . . 3 𝑋 = 𝐽
2 cmphaushmeo.2 . . 3 𝑌 = 𝐾
31, 2hmeof1o 22369 . 2 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋1-1-onto𝑌)
4 f1ocnv 6602 . . . . . . . 8 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
5 f1of 6590 . . . . . . . 8 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
64, 5syl 17 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌𝑋)
76a1i 11 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋1-1-onto𝑌𝐹:𝑌𝑋))
8 f1orel 6593 . . . . . . . . . . . 12 (𝐹:𝑋1-1-onto𝑌 → Rel 𝐹)
98ad2antll 728 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → Rel 𝐹)
10 dfrel2 6013 . . . . . . . . . . 11 (Rel 𝐹𝐹 = 𝐹)
119, 10sylib 221 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → 𝐹 = 𝐹)
1211imaeq1d 5895 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → (𝐹𝑥) = (𝐹𝑥))
13 simp2 1134 . . . . . . . . . . 11 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Haus)
1413adantr 484 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → 𝐾 ∈ Haus)
15 imassrn 5907 . . . . . . . . . . 11 (𝐹𝑥) ⊆ ran 𝐹
16 f1ofo 6597 . . . . . . . . . . . . 13 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋onto𝑌)
1716ad2antll 728 . . . . . . . . . . . 12 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → 𝐹:𝑋onto𝑌)
18 forn 6568 . . . . . . . . . . . 12 (𝐹:𝑋onto𝑌 → ran 𝐹 = 𝑌)
1917, 18syl 17 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → ran 𝐹 = 𝑌)
2015, 19sseqtrid 3967 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → (𝐹𝑥) ⊆ 𝑌)
21 simpl3 1190 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → 𝐹 ∈ (𝐽 Cn 𝐾))
22 simp1 1133 . . . . . . . . . . . . 13 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Comp)
2322adantr 484 . . . . . . . . . . . 12 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → 𝐽 ∈ Comp)
24 simprl 770 . . . . . . . . . . . 12 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → 𝑥 ∈ (Clsd‘𝐽))
25 cmpcld 22007 . . . . . . . . . . . 12 ((𝐽 ∈ Comp ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝐽t 𝑥) ∈ Comp)
2623, 24, 25syl2anc 587 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → (𝐽t 𝑥) ∈ Comp)
27 imacmp 22002 . . . . . . . . . . 11 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝑥) ∈ Comp) → (𝐾t (𝐹𝑥)) ∈ Comp)
2821, 26, 27syl2anc 587 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → (𝐾t (𝐹𝑥)) ∈ Comp)
292hauscmp 22012 . . . . . . . . . 10 ((𝐾 ∈ Haus ∧ (𝐹𝑥) ⊆ 𝑌 ∧ (𝐾t (𝐹𝑥)) ∈ Comp) → (𝐹𝑥) ∈ (Clsd‘𝐾))
3014, 20, 28, 29syl3anc 1368 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → (𝐹𝑥) ∈ (Clsd‘𝐾))
3112, 30eqeltrd 2890 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → (𝐹𝑥) ∈ (Clsd‘𝐾))
3231expr 460 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝐹:𝑋1-1-onto𝑌 → (𝐹𝑥) ∈ (Clsd‘𝐾)))
3332ralrimdva 3154 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋1-1-onto𝑌 → ∀𝑥 ∈ (Clsd‘𝐽)(𝐹𝑥) ∈ (Clsd‘𝐾)))
347, 33jcad 516 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋1-1-onto𝑌 → (𝐹:𝑌𝑋 ∧ ∀𝑥 ∈ (Clsd‘𝐽)(𝐹𝑥) ∈ (Clsd‘𝐾))))
35 haustop 21936 . . . . . . . 8 (𝐾 ∈ Haus → 𝐾 ∈ Top)
3613, 35syl 17 . . . . . . 7 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top)
372toptopon 21522 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
3836, 37sylib 221 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ (TopOn‘𝑌))
39 cmptop 22000 . . . . . . . 8 (𝐽 ∈ Comp → 𝐽 ∈ Top)
4022, 39syl 17 . . . . . . 7 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top)
411toptopon 21522 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
4240, 41sylib 221 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ (TopOn‘𝑋))
43 iscncl 21874 . . . . . 6 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐹 ∈ (𝐾 Cn 𝐽) ↔ (𝐹:𝑌𝑋 ∧ ∀𝑥 ∈ (Clsd‘𝐽)(𝐹𝑥) ∈ (Clsd‘𝐾))))
4438, 42, 43syl2anc 587 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∈ (𝐾 Cn 𝐽) ↔ (𝐹:𝑌𝑋 ∧ ∀𝑥 ∈ (Clsd‘𝐽)(𝐹𝑥) ∈ (Clsd‘𝐾))))
4534, 44sylibrd 262 . . . 4 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝐾 Cn 𝐽)))
46 simp3 1135 . . . 4 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝐽 Cn 𝐾))
4745, 46jctild 529 . . 3 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋1-1-onto𝑌 → (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽))))
48 ishmeo 22364 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)))
4947, 48syl6ibr 255 . 2 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝐽Homeo𝐾)))
503, 49impbid2 229 1 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹:𝑋1-1-onto𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wss 3881   cuni 4800  ccnv 5518  ran crn 5520  cima 5522  Rel wrel 5524  wf 6320  ontowfo 6322  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  t crest 16686  Topctop 21498  TopOnctopon 21515  Clsdccld 21621   Cn ccn 21829  Hauscha 21913  Compccmp 21991  Homeochmeo 22358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-fin 8496  df-fi 8859  df-rest 16688  df-topgen 16709  df-top 21499  df-topon 21516  df-bases 21551  df-cld 21624  df-cls 21626  df-cn 21832  df-haus 21920  df-cmp 21992  df-hmeo 22360
This theorem is referenced by:  cncfcnvcn  23530
  Copyright terms: Public domain W3C validator