MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmphaushmeo Structured version   Visualization version   GIF version

Theorem cmphaushmeo 22951
Description: A continuous bijection from a compact space to a Hausdorff space is a homeomorphism. (Contributed by Mario Carneiro, 17-Feb-2015.)
Hypotheses
Ref Expression
cmphaushmeo.1 𝑋 = 𝐽
cmphaushmeo.2 𝑌 = 𝐾
Assertion
Ref Expression
cmphaushmeo ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹:𝑋1-1-onto𝑌))

Proof of Theorem cmphaushmeo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cmphaushmeo.1 . . 3 𝑋 = 𝐽
2 cmphaushmeo.2 . . 3 𝑌 = 𝐾
31, 2hmeof1o 22915 . 2 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋1-1-onto𝑌)
4 f1ocnv 6728 . . . . . . . 8 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
5 f1of 6716 . . . . . . . 8 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
64, 5syl 17 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌𝑋)
76a1i 11 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋1-1-onto𝑌𝐹:𝑌𝑋))
8 f1orel 6719 . . . . . . . . . . . 12 (𝐹:𝑋1-1-onto𝑌 → Rel 𝐹)
98ad2antll 726 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → Rel 𝐹)
10 dfrel2 6092 . . . . . . . . . . 11 (Rel 𝐹𝐹 = 𝐹)
119, 10sylib 217 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → 𝐹 = 𝐹)
1211imaeq1d 5968 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → (𝐹𝑥) = (𝐹𝑥))
13 simp2 1136 . . . . . . . . . . 11 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Haus)
1413adantr 481 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → 𝐾 ∈ Haus)
15 imassrn 5980 . . . . . . . . . . 11 (𝐹𝑥) ⊆ ran 𝐹
16 f1ofo 6723 . . . . . . . . . . . . 13 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋onto𝑌)
1716ad2antll 726 . . . . . . . . . . . 12 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → 𝐹:𝑋onto𝑌)
18 forn 6691 . . . . . . . . . . . 12 (𝐹:𝑋onto𝑌 → ran 𝐹 = 𝑌)
1917, 18syl 17 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → ran 𝐹 = 𝑌)
2015, 19sseqtrid 3973 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → (𝐹𝑥) ⊆ 𝑌)
21 simpl3 1192 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → 𝐹 ∈ (𝐽 Cn 𝐾))
22 simp1 1135 . . . . . . . . . . . . 13 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Comp)
2322adantr 481 . . . . . . . . . . . 12 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → 𝐽 ∈ Comp)
24 simprl 768 . . . . . . . . . . . 12 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → 𝑥 ∈ (Clsd‘𝐽))
25 cmpcld 22553 . . . . . . . . . . . 12 ((𝐽 ∈ Comp ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝐽t 𝑥) ∈ Comp)
2623, 24, 25syl2anc 584 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → (𝐽t 𝑥) ∈ Comp)
27 imacmp 22548 . . . . . . . . . . 11 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝑥) ∈ Comp) → (𝐾t (𝐹𝑥)) ∈ Comp)
2821, 26, 27syl2anc 584 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → (𝐾t (𝐹𝑥)) ∈ Comp)
292hauscmp 22558 . . . . . . . . . 10 ((𝐾 ∈ Haus ∧ (𝐹𝑥) ⊆ 𝑌 ∧ (𝐾t (𝐹𝑥)) ∈ Comp) → (𝐹𝑥) ∈ (Clsd‘𝐾))
3014, 20, 28, 29syl3anc 1370 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → (𝐹𝑥) ∈ (Clsd‘𝐾))
3112, 30eqeltrd 2839 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → (𝐹𝑥) ∈ (Clsd‘𝐾))
3231expr 457 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝐹:𝑋1-1-onto𝑌 → (𝐹𝑥) ∈ (Clsd‘𝐾)))
3332ralrimdva 3106 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋1-1-onto𝑌 → ∀𝑥 ∈ (Clsd‘𝐽)(𝐹𝑥) ∈ (Clsd‘𝐾)))
347, 33jcad 513 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋1-1-onto𝑌 → (𝐹:𝑌𝑋 ∧ ∀𝑥 ∈ (Clsd‘𝐽)(𝐹𝑥) ∈ (Clsd‘𝐾))))
35 haustop 22482 . . . . . . . 8 (𝐾 ∈ Haus → 𝐾 ∈ Top)
3613, 35syl 17 . . . . . . 7 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top)
372toptopon 22066 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
3836, 37sylib 217 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ (TopOn‘𝑌))
39 cmptop 22546 . . . . . . . 8 (𝐽 ∈ Comp → 𝐽 ∈ Top)
4022, 39syl 17 . . . . . . 7 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top)
411toptopon 22066 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
4240, 41sylib 217 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ (TopOn‘𝑋))
43 iscncl 22420 . . . . . 6 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐹 ∈ (𝐾 Cn 𝐽) ↔ (𝐹:𝑌𝑋 ∧ ∀𝑥 ∈ (Clsd‘𝐽)(𝐹𝑥) ∈ (Clsd‘𝐾))))
4438, 42, 43syl2anc 584 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∈ (𝐾 Cn 𝐽) ↔ (𝐹:𝑌𝑋 ∧ ∀𝑥 ∈ (Clsd‘𝐽)(𝐹𝑥) ∈ (Clsd‘𝐾))))
4534, 44sylibrd 258 . . . 4 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝐾 Cn 𝐽)))
46 simp3 1137 . . . 4 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝐽 Cn 𝐾))
4745, 46jctild 526 . . 3 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋1-1-onto𝑌 → (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽))))
48 ishmeo 22910 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)))
4947, 48syl6ibr 251 . 2 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝐽Homeo𝐾)))
503, 49impbid2 225 1 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹:𝑋1-1-onto𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wss 3887   cuni 4839  ccnv 5588  ran crn 5590  cima 5592  Rel wrel 5594  wf 6429  ontowfo 6431  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  t crest 17131  Topctop 22042  TopOnctopon 22059  Clsdccld 22167   Cn ccn 22375  Hauscha 22459  Compccmp 22537  Homeochmeo 22904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-fin 8737  df-fi 9170  df-rest 17133  df-topgen 17154  df-top 22043  df-topon 22060  df-bases 22096  df-cld 22170  df-cls 22172  df-cn 22378  df-haus 22466  df-cmp 22538  df-hmeo 22906
This theorem is referenced by:  cncfcnvcn  24088
  Copyright terms: Public domain W3C validator