MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmphaushmeo Structured version   Visualization version   GIF version

Theorem cmphaushmeo 23829
Description: A continuous bijection from a compact space to a Hausdorff space is a homeomorphism. (Contributed by Mario Carneiro, 17-Feb-2015.)
Hypotheses
Ref Expression
cmphaushmeo.1 𝑋 = 𝐽
cmphaushmeo.2 𝑌 = 𝐾
Assertion
Ref Expression
cmphaushmeo ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹:𝑋1-1-onto𝑌))

Proof of Theorem cmphaushmeo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cmphaushmeo.1 . . 3 𝑋 = 𝐽
2 cmphaushmeo.2 . . 3 𝑌 = 𝐾
31, 2hmeof1o 23793 . 2 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋1-1-onto𝑌)
4 f1ocnv 6874 . . . . . . . 8 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
5 f1of 6862 . . . . . . . 8 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
64, 5syl 17 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌𝑋)
76a1i 11 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋1-1-onto𝑌𝐹:𝑌𝑋))
8 f1orel 6865 . . . . . . . . . . . 12 (𝐹:𝑋1-1-onto𝑌 → Rel 𝐹)
98ad2antll 728 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → Rel 𝐹)
10 dfrel2 6220 . . . . . . . . . . 11 (Rel 𝐹𝐹 = 𝐹)
119, 10sylib 218 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → 𝐹 = 𝐹)
1211imaeq1d 6088 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → (𝐹𝑥) = (𝐹𝑥))
13 simp2 1137 . . . . . . . . . . 11 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Haus)
1413adantr 480 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → 𝐾 ∈ Haus)
15 imassrn 6100 . . . . . . . . . . 11 (𝐹𝑥) ⊆ ran 𝐹
16 f1ofo 6869 . . . . . . . . . . . . 13 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋onto𝑌)
1716ad2antll 728 . . . . . . . . . . . 12 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → 𝐹:𝑋onto𝑌)
18 forn 6837 . . . . . . . . . . . 12 (𝐹:𝑋onto𝑌 → ran 𝐹 = 𝑌)
1917, 18syl 17 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → ran 𝐹 = 𝑌)
2015, 19sseqtrid 4061 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → (𝐹𝑥) ⊆ 𝑌)
21 simpl3 1193 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → 𝐹 ∈ (𝐽 Cn 𝐾))
22 simp1 1136 . . . . . . . . . . . . 13 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Comp)
2322adantr 480 . . . . . . . . . . . 12 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → 𝐽 ∈ Comp)
24 simprl 770 . . . . . . . . . . . 12 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → 𝑥 ∈ (Clsd‘𝐽))
25 cmpcld 23431 . . . . . . . . . . . 12 ((𝐽 ∈ Comp ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝐽t 𝑥) ∈ Comp)
2623, 24, 25syl2anc 583 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → (𝐽t 𝑥) ∈ Comp)
27 imacmp 23426 . . . . . . . . . . 11 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝑥) ∈ Comp) → (𝐾t (𝐹𝑥)) ∈ Comp)
2821, 26, 27syl2anc 583 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → (𝐾t (𝐹𝑥)) ∈ Comp)
292hauscmp 23436 . . . . . . . . . 10 ((𝐾 ∈ Haus ∧ (𝐹𝑥) ⊆ 𝑌 ∧ (𝐾t (𝐹𝑥)) ∈ Comp) → (𝐹𝑥) ∈ (Clsd‘𝐾))
3014, 20, 28, 29syl3anc 1371 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → (𝐹𝑥) ∈ (Clsd‘𝐾))
3112, 30eqeltrd 2844 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → (𝐹𝑥) ∈ (Clsd‘𝐾))
3231expr 456 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝐹:𝑋1-1-onto𝑌 → (𝐹𝑥) ∈ (Clsd‘𝐾)))
3332ralrimdva 3160 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋1-1-onto𝑌 → ∀𝑥 ∈ (Clsd‘𝐽)(𝐹𝑥) ∈ (Clsd‘𝐾)))
347, 33jcad 512 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋1-1-onto𝑌 → (𝐹:𝑌𝑋 ∧ ∀𝑥 ∈ (Clsd‘𝐽)(𝐹𝑥) ∈ (Clsd‘𝐾))))
35 haustop 23360 . . . . . . . 8 (𝐾 ∈ Haus → 𝐾 ∈ Top)
3613, 35syl 17 . . . . . . 7 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top)
372toptopon 22944 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
3836, 37sylib 218 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ (TopOn‘𝑌))
39 cmptop 23424 . . . . . . . 8 (𝐽 ∈ Comp → 𝐽 ∈ Top)
4022, 39syl 17 . . . . . . 7 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top)
411toptopon 22944 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
4240, 41sylib 218 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ (TopOn‘𝑋))
43 iscncl 23298 . . . . . 6 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐹 ∈ (𝐾 Cn 𝐽) ↔ (𝐹:𝑌𝑋 ∧ ∀𝑥 ∈ (Clsd‘𝐽)(𝐹𝑥) ∈ (Clsd‘𝐾))))
4438, 42, 43syl2anc 583 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∈ (𝐾 Cn 𝐽) ↔ (𝐹:𝑌𝑋 ∧ ∀𝑥 ∈ (Clsd‘𝐽)(𝐹𝑥) ∈ (Clsd‘𝐾))))
4534, 44sylibrd 259 . . . 4 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝐾 Cn 𝐽)))
46 simp3 1138 . . . 4 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝐽 Cn 𝐾))
4745, 46jctild 525 . . 3 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋1-1-onto𝑌 → (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽))))
48 ishmeo 23788 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)))
4947, 48imbitrrdi 252 . 2 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝐽Homeo𝐾)))
503, 49impbid2 226 1 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹:𝑋1-1-onto𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wss 3976   cuni 4931  ccnv 5699  ran crn 5701  cima 5703  Rel wrel 5705  wf 6569  ontowfo 6571  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  t crest 17480  Topctop 22920  TopOnctopon 22937  Clsdccld 23045   Cn ccn 23253  Hauscha 23337  Compccmp 23415  Homeochmeo 23782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-1o 8522  df-2o 8523  df-map 8886  df-en 9004  df-dom 9005  df-fin 9007  df-fi 9480  df-rest 17482  df-topgen 17503  df-top 22921  df-topon 22938  df-bases 22974  df-cld 23048  df-cls 23050  df-cn 23256  df-haus 23344  df-cmp 23416  df-hmeo 23784
This theorem is referenced by:  cncfcnvcn  24971
  Copyright terms: Public domain W3C validator