| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oexrnex | Structured version Visualization version GIF version | ||
| Description: If the range of a 1-1 onto function is a set, the function itself is a set. (Contributed by AV, 2-Jun-2019.) |
| Ref | Expression |
|---|---|
| f1oexrnex | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐹:𝐴–1-1-onto→𝐵) | |
| 2 | f1ocnv 6841 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
| 3 | f1of 6829 | . . . 4 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) | |
| 4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → ◡𝐹:𝐵⟶𝐴) |
| 5 | fex 7229 | . . 3 ⊢ ((◡𝐹:𝐵⟶𝐴 ∧ 𝐵 ∈ 𝑉) → ◡𝐹 ∈ V) | |
| 6 | 4, 5 | sylancom 588 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → ◡𝐹 ∈ V) |
| 7 | f1orel 6832 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) | |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → Rel 𝐹) |
| 9 | relcnvexb 7931 | . . 3 ⊢ (Rel 𝐹 → (𝐹 ∈ V ↔ ◡𝐹 ∈ V)) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → (𝐹 ∈ V ↔ ◡𝐹 ∈ V)) |
| 11 | 6, 10 | mpbird 257 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐹 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 Vcvv 3464 ◡ccnv 5666 Rel wrel 5672 ⟶wf 6538 –1-1-onto→wf1o 6541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 |
| This theorem is referenced by: gsumzf1o 19903 poimirlem3 37571 poimirlem24 37592 poimirlem25 37593 |
| Copyright terms: Public domain | W3C validator |