![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1oexrnex | Structured version Visualization version GIF version |
Description: If the range of a 1-1 onto function is a set, the function itself is a set. (Contributed by AV, 2-Jun-2019.) |
Ref | Expression |
---|---|
f1oexrnex | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐹:𝐴–1-1-onto→𝐵) | |
2 | f1ocnv 6839 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
3 | f1of 6827 | . . . 4 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → ◡𝐹:𝐵⟶𝐴) |
5 | fex 7223 | . . 3 ⊢ ((◡𝐹:𝐵⟶𝐴 ∧ 𝐵 ∈ 𝑉) → ◡𝐹 ∈ V) | |
6 | 4, 5 | sylancom 587 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → ◡𝐹 ∈ V) |
7 | f1orel 6830 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) | |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → Rel 𝐹) |
9 | relcnvexb 7916 | . . 3 ⊢ (Rel 𝐹 → (𝐹 ∈ V ↔ ◡𝐹 ∈ V)) | |
10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → (𝐹 ∈ V ↔ ◡𝐹 ∈ V)) |
11 | 6, 10 | mpbird 257 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2098 Vcvv 3468 ◡ccnv 5668 Rel wrel 5674 ⟶wf 6533 –1-1-onto→wf1o 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 |
This theorem is referenced by: gsumzf1o 19832 poimirlem3 37004 poimirlem24 37025 poimirlem25 37026 |
Copyright terms: Public domain | W3C validator |