![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1oexrnex | Structured version Visualization version GIF version |
Description: If the range of a 1-1 onto function is a set, the function itself is a set. (Contributed by AV, 2-Jun-2019.) |
Ref | Expression |
---|---|
f1oexrnex | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐹:𝐴–1-1-onto→𝐵) | |
2 | f1ocnv 6861 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
3 | f1of 6849 | . . . 4 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → ◡𝐹:𝐵⟶𝐴) |
5 | fex 7246 | . . 3 ⊢ ((◡𝐹:𝐵⟶𝐴 ∧ 𝐵 ∈ 𝑉) → ◡𝐹 ∈ V) | |
6 | 4, 5 | sylancom 588 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → ◡𝐹 ∈ V) |
7 | f1orel 6852 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) | |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → Rel 𝐹) |
9 | relcnvexb 7949 | . . 3 ⊢ (Rel 𝐹 → (𝐹 ∈ V ↔ ◡𝐹 ∈ V)) | |
10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → (𝐹 ∈ V ↔ ◡𝐹 ∈ V)) |
11 | 6, 10 | mpbird 257 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2106 Vcvv 3478 ◡ccnv 5688 Rel wrel 5694 ⟶wf 6559 –1-1-onto→wf1o 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 |
This theorem is referenced by: gsumzf1o 19945 poimirlem3 37610 poimirlem24 37631 poimirlem25 37632 |
Copyright terms: Public domain | W3C validator |