Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1oexrnex | Structured version Visualization version GIF version |
Description: If the range of a 1-1 onto function is a set, the function itself is a set. (Contributed by AV, 2-Jun-2019.) |
Ref | Expression |
---|---|
f1oexrnex | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐹:𝐴–1-1-onto→𝐵) | |
2 | f1ocnv 6712 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
3 | f1of 6700 | . . . 4 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → ◡𝐹:𝐵⟶𝐴) |
5 | fex 7084 | . . 3 ⊢ ((◡𝐹:𝐵⟶𝐴 ∧ 𝐵 ∈ 𝑉) → ◡𝐹 ∈ V) | |
6 | 4, 5 | sylancom 587 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → ◡𝐹 ∈ V) |
7 | f1orel 6703 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) | |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → Rel 𝐹) |
9 | relcnvexb 7747 | . . 3 ⊢ (Rel 𝐹 → (𝐹 ∈ V ↔ ◡𝐹 ∈ V)) | |
10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → (𝐹 ∈ V ↔ ◡𝐹 ∈ V)) |
11 | 6, 10 | mpbird 256 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 Vcvv 3422 ◡ccnv 5579 Rel wrel 5585 ⟶wf 6414 –1-1-onto→wf1o 6417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 |
This theorem is referenced by: gsumzf1o 19428 poimirlem3 35707 poimirlem24 35728 poimirlem25 35729 |
Copyright terms: Public domain | W3C validator |