MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oexrnex Structured version   Visualization version   GIF version

Theorem f1oexrnex 7860
Description: If the range of a 1-1 onto function is a set, the function itself is a set. (Contributed by AV, 2-Jun-2019.)
Assertion
Ref Expression
f1oexrnex ((𝐹:𝐴1-1-onto𝐵𝐵𝑉) → 𝐹 ∈ V)

Proof of Theorem f1oexrnex
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐹:𝐴1-1-onto𝐵𝐵𝑉) → 𝐹:𝐴1-1-onto𝐵)
2 f1ocnv 6776 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
3 f1of 6764 . . . 4 (𝐹:𝐵1-1-onto𝐴𝐹:𝐵𝐴)
41, 2, 33syl 18 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐵𝑉) → 𝐹:𝐵𝐴)
5 fex 7162 . . 3 ((𝐹:𝐵𝐴𝐵𝑉) → 𝐹 ∈ V)
64, 5sylancom 588 . 2 ((𝐹:𝐴1-1-onto𝐵𝐵𝑉) → 𝐹 ∈ V)
7 f1orel 6767 . . . 4 (𝐹:𝐴1-1-onto𝐵 → Rel 𝐹)
87adantr 480 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐵𝑉) → Rel 𝐹)
9 relcnvexb 7859 . . 3 (Rel 𝐹 → (𝐹 ∈ V ↔ 𝐹 ∈ V))
108, 9syl 17 . 2 ((𝐹:𝐴1-1-onto𝐵𝐵𝑉) → (𝐹 ∈ V ↔ 𝐹 ∈ V))
116, 10mpbird 257 1 ((𝐹:𝐴1-1-onto𝐵𝐵𝑉) → 𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  Vcvv 3436  ccnv 5618  Rel wrel 5624  wf 6478  1-1-ontowf1o 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490
This theorem is referenced by:  gsumzf1o  19791  poimirlem3  37603  poimirlem24  37624  poimirlem25  37625
  Copyright terms: Public domain W3C validator