Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neicvgel1 Structured version   Visualization version   GIF version

Theorem neicvgel1 43427
Description: A subset being an element of a neighborhood of a point is equivalent to the complement of that subset not being a element of the convergent of that point. (Contributed by RP, 12-Jun-2021.)
Hypotheses
Ref Expression
neicvg.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
neicvg.p 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
neicvg.d 𝐷 = (𝑃𝐵)
neicvg.f 𝐹 = (𝒫 𝐵𝑂𝐵)
neicvg.g 𝐺 = (𝐵𝑂𝒫 𝐵)
neicvg.h 𝐻 = (𝐹 ∘ (𝐷𝐺))
neicvg.r (𝜑𝑁𝐻𝑀)
neicvgel.x (𝜑𝑋𝐵)
neicvgel.s (𝜑𝑆 ∈ 𝒫 𝐵)
Assertion
Ref Expression
neicvgel1 (𝜑 → (𝑆 ∈ (𝑁𝑋) ↔ ¬ (𝐵𝑆) ∈ (𝑀𝑋)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝐵,𝑛,𝑜,𝑝   𝐷,𝑖,𝑗,𝑘,𝑙,𝑚   𝐷,𝑛,𝑜,𝑝   𝑖,𝐹,𝑗,𝑘,𝑙   𝑛,𝐹,𝑜,𝑝   𝑖,𝐺,𝑗,𝑘,𝑙,𝑚   𝑛,𝐺,𝑜,𝑝   𝑖,𝑀,𝑗,𝑘,𝑙   𝑛,𝑀,𝑜,𝑝   𝑖,𝑁,𝑗,𝑘,𝑙,𝑚   𝑛,𝑁,𝑜,𝑝   𝑆,𝑚   𝑆,𝑜   𝑋,𝑙,𝑚   𝜑,𝑖,𝑗,𝑘,𝑙   𝜑,𝑛,𝑜,𝑝
Allowed substitution hints:   𝜑(𝑚)   𝑃(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑆(𝑖,𝑗,𝑘,𝑛,𝑝,𝑙)   𝐹(𝑚)   𝐻(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑀(𝑚)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑋(𝑖,𝑗,𝑘,𝑛,𝑜,𝑝)

Proof of Theorem neicvgel1
StepHypRef Expression
1 neicvg.d . . . 4 𝐷 = (𝑃𝐵)
2 neicvg.h . . . 4 𝐻 = (𝐹 ∘ (𝐷𝐺))
3 neicvg.r . . . 4 (𝜑𝑁𝐻𝑀)
41, 2, 3neicvgbex 43420 . . 3 (𝜑𝐵 ∈ V)
5 neicvg.o . . . . . 6 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
6 simpr 484 . . . . . . 7 ((𝜑𝐵 ∈ V) → 𝐵 ∈ V)
76pwexd 5370 . . . . . 6 ((𝜑𝐵 ∈ V) → 𝒫 𝐵 ∈ V)
8 neicvg.f . . . . . 6 𝐹 = (𝒫 𝐵𝑂𝐵)
95, 7, 6, 8fsovf1od 43324 . . . . 5 ((𝜑𝐵 ∈ V) → 𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
10 f1ofn 6827 . . . . 5 (𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) → 𝐹 Fn (𝒫 𝐵m 𝒫 𝐵))
119, 10syl 17 . . . 4 ((𝜑𝐵 ∈ V) → 𝐹 Fn (𝒫 𝐵m 𝒫 𝐵))
12 neicvg.p . . . . . 6 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
1312, 1, 6dssmapf1od 43329 . . . . 5 ((𝜑𝐵 ∈ V) → 𝐷:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵))
14 f1of 6826 . . . . 5 (𝐷:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵) → 𝐷:(𝒫 𝐵m 𝒫 𝐵)⟶(𝒫 𝐵m 𝒫 𝐵))
1513, 14syl 17 . . . 4 ((𝜑𝐵 ∈ V) → 𝐷:(𝒫 𝐵m 𝒫 𝐵)⟶(𝒫 𝐵m 𝒫 𝐵))
16 neicvg.g . . . . 5 𝐺 = (𝐵𝑂𝒫 𝐵)
175, 6, 7, 16fsovfd 43320 . . . 4 ((𝜑𝐵 ∈ V) → 𝐺:(𝒫 𝒫 𝐵m 𝐵)⟶(𝒫 𝐵m 𝒫 𝐵))
182breqi 5147 . . . . . 6 (𝑁𝐻𝑀𝑁(𝐹 ∘ (𝐷𝐺))𝑀)
193, 18sylib 217 . . . . 5 (𝜑𝑁(𝐹 ∘ (𝐷𝐺))𝑀)
2019adantr 480 . . . 4 ((𝜑𝐵 ∈ V) → 𝑁(𝐹 ∘ (𝐷𝐺))𝑀)
2111, 15, 17, 20brcofffn 43339 . . 3 ((𝜑𝐵 ∈ V) → (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀))
224, 21mpdan 684 . 2 (𝜑 → (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀))
23 simpr2 1192 . . . 4 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)))
24 neicvgel.x . . . . 5 (𝜑𝑋𝐵)
2524adantr 480 . . . 4 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → 𝑋𝐵)
26 neicvgel.s . . . . 5 (𝜑𝑆 ∈ 𝒫 𝐵)
2726adantr 480 . . . 4 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → 𝑆 ∈ 𝒫 𝐵)
2812, 1, 23, 25, 27ntrclselnel1 43365 . . 3 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝑋 ∈ ((𝐺𝑁)‘𝑆) ↔ ¬ 𝑋 ∈ ((𝐷‘(𝐺𝑁))‘(𝐵𝑆))))
29 eqid 2726 . . . 4 (𝒫 𝐵𝑂𝐵) = (𝒫 𝐵𝑂𝐵)
30 simpr1 1191 . . . . 5 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → 𝑁𝐺(𝐺𝑁))
3116breqi 5147 . . . . . . 7 (𝑁𝐺(𝐺𝑁) ↔ 𝑁(𝐵𝑂𝒫 𝐵)(𝐺𝑁))
3231a1i 11 . . . . . 6 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝑁𝐺(𝐺𝑁) ↔ 𝑁(𝐵𝑂𝒫 𝐵)(𝐺𝑁)))
334adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → 𝐵 ∈ V)
34 id 22 . . . . . . . . 9 (𝐵 ∈ V → 𝐵 ∈ V)
35 pwexg 5369 . . . . . . . . 9 (𝐵 ∈ V → 𝒫 𝐵 ∈ V)
36 eqid 2726 . . . . . . . . 9 (𝐵𝑂𝒫 𝐵) = (𝐵𝑂𝒫 𝐵)
375, 34, 35, 36fsovf1od 43324 . . . . . . . 8 (𝐵 ∈ V → (𝐵𝑂𝒫 𝐵):(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵))
3833, 37syl 17 . . . . . . 7 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝐵𝑂𝒫 𝐵):(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵))
39 f1orel 6829 . . . . . . 7 ((𝐵𝑂𝒫 𝐵):(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵) → Rel (𝐵𝑂𝒫 𝐵))
40 relbrcnvg 6097 . . . . . . 7 (Rel (𝐵𝑂𝒫 𝐵) → ((𝐺𝑁)(𝐵𝑂𝒫 𝐵)𝑁𝑁(𝐵𝑂𝒫 𝐵)(𝐺𝑁)))
4138, 39, 403syl 18 . . . . . 6 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → ((𝐺𝑁)(𝐵𝑂𝒫 𝐵)𝑁𝑁(𝐵𝑂𝒫 𝐵)(𝐺𝑁)))
425, 34, 35, 36, 29fsovcnvd 43322 . . . . . . . 8 (𝐵 ∈ V → (𝐵𝑂𝒫 𝐵) = (𝒫 𝐵𝑂𝐵))
4342breqd 5152 . . . . . . 7 (𝐵 ∈ V → ((𝐺𝑁)(𝐵𝑂𝒫 𝐵)𝑁 ↔ (𝐺𝑁)(𝒫 𝐵𝑂𝐵)𝑁))
4433, 43syl 17 . . . . . 6 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → ((𝐺𝑁)(𝐵𝑂𝒫 𝐵)𝑁 ↔ (𝐺𝑁)(𝒫 𝐵𝑂𝐵)𝑁))
4532, 41, 443bitr2d 307 . . . . 5 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝑁𝐺(𝐺𝑁) ↔ (𝐺𝑁)(𝒫 𝐵𝑂𝐵)𝑁))
4630, 45mpbid 231 . . . 4 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝐺𝑁)(𝒫 𝐵𝑂𝐵)𝑁)
475, 29, 46, 25, 27ntrneiel 43389 . . 3 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝑋 ∈ ((𝐺𝑁)‘𝑆) ↔ 𝑆 ∈ (𝑁𝑋)))
48 simpr3 1193 . . . . 5 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝐷‘(𝐺𝑁))𝐹𝑀)
49 difssd 4127 . . . . . . 7 (𝜑 → (𝐵𝑆) ⊆ 𝐵)
504, 49sselpwd 5319 . . . . . 6 (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)
5150adantr 480 . . . . 5 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝐵𝑆) ∈ 𝒫 𝐵)
525, 8, 48, 25, 51ntrneiel 43389 . . . 4 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝑋 ∈ ((𝐷‘(𝐺𝑁))‘(𝐵𝑆)) ↔ (𝐵𝑆) ∈ (𝑀𝑋)))
5352notbid 318 . . 3 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (¬ 𝑋 ∈ ((𝐷‘(𝐺𝑁))‘(𝐵𝑆)) ↔ ¬ (𝐵𝑆) ∈ (𝑀𝑋)))
5428, 47, 533bitr3d 309 . 2 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝑆 ∈ (𝑁𝑋) ↔ ¬ (𝐵𝑆) ∈ (𝑀𝑋)))
5522, 54mpdan 684 1 (𝜑 → (𝑆 ∈ (𝑁𝑋) ↔ ¬ (𝐵𝑆) ∈ (𝑀𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  {crab 3426  Vcvv 3468  cdif 3940  𝒫 cpw 4597   class class class wbr 5141  cmpt 5224  ccnv 5668  ccom 5673  Rel wrel 5674   Fn wfn 6531  wf 6532  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7404  cmpo 7406  m cmap 8819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7971  df-2nd 7972  df-map 8821
This theorem is referenced by:  neicvgel2  43428  neicvgfv  43429
  Copyright terms: Public domain W3C validator