Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neicvgel1 Structured version   Visualization version   GIF version

Theorem neicvgel1 44108
Description: A subset being an element of a neighborhood of a point is equivalent to the complement of that subset not being a element of the convergent of that point. (Contributed by RP, 12-Jun-2021.)
Hypotheses
Ref Expression
neicvg.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
neicvg.p 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
neicvg.d 𝐷 = (𝑃𝐵)
neicvg.f 𝐹 = (𝒫 𝐵𝑂𝐵)
neicvg.g 𝐺 = (𝐵𝑂𝒫 𝐵)
neicvg.h 𝐻 = (𝐹 ∘ (𝐷𝐺))
neicvg.r (𝜑𝑁𝐻𝑀)
neicvgel.x (𝜑𝑋𝐵)
neicvgel.s (𝜑𝑆 ∈ 𝒫 𝐵)
Assertion
Ref Expression
neicvgel1 (𝜑 → (𝑆 ∈ (𝑁𝑋) ↔ ¬ (𝐵𝑆) ∈ (𝑀𝑋)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝐵,𝑛,𝑜,𝑝   𝐷,𝑖,𝑗,𝑘,𝑙,𝑚   𝐷,𝑛,𝑜,𝑝   𝑖,𝐹,𝑗,𝑘,𝑙   𝑛,𝐹,𝑜,𝑝   𝑖,𝐺,𝑗,𝑘,𝑙,𝑚   𝑛,𝐺,𝑜,𝑝   𝑖,𝑀,𝑗,𝑘,𝑙   𝑛,𝑀,𝑜,𝑝   𝑖,𝑁,𝑗,𝑘,𝑙,𝑚   𝑛,𝑁,𝑜,𝑝   𝑆,𝑚   𝑆,𝑜   𝑋,𝑙,𝑚   𝜑,𝑖,𝑗,𝑘,𝑙   𝜑,𝑛,𝑜,𝑝
Allowed substitution hints:   𝜑(𝑚)   𝑃(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑆(𝑖,𝑗,𝑘,𝑛,𝑝,𝑙)   𝐹(𝑚)   𝐻(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑀(𝑚)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑋(𝑖,𝑗,𝑘,𝑛,𝑜,𝑝)

Proof of Theorem neicvgel1
StepHypRef Expression
1 neicvg.d . . . 4 𝐷 = (𝑃𝐵)
2 neicvg.h . . . 4 𝐻 = (𝐹 ∘ (𝐷𝐺))
3 neicvg.r . . . 4 (𝜑𝑁𝐻𝑀)
41, 2, 3neicvgbex 44101 . . 3 (𝜑𝐵 ∈ V)
5 neicvg.o . . . . . 6 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
6 simpr 484 . . . . . . 7 ((𝜑𝐵 ∈ V) → 𝐵 ∈ V)
76pwexd 5334 . . . . . 6 ((𝜑𝐵 ∈ V) → 𝒫 𝐵 ∈ V)
8 neicvg.f . . . . . 6 𝐹 = (𝒫 𝐵𝑂𝐵)
95, 7, 6, 8fsovf1od 44005 . . . . 5 ((𝜑𝐵 ∈ V) → 𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
10 f1ofn 6801 . . . . 5 (𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) → 𝐹 Fn (𝒫 𝐵m 𝒫 𝐵))
119, 10syl 17 . . . 4 ((𝜑𝐵 ∈ V) → 𝐹 Fn (𝒫 𝐵m 𝒫 𝐵))
12 neicvg.p . . . . . 6 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
1312, 1, 6dssmapf1od 44010 . . . . 5 ((𝜑𝐵 ∈ V) → 𝐷:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵))
14 f1of 6800 . . . . 5 (𝐷:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵) → 𝐷:(𝒫 𝐵m 𝒫 𝐵)⟶(𝒫 𝐵m 𝒫 𝐵))
1513, 14syl 17 . . . 4 ((𝜑𝐵 ∈ V) → 𝐷:(𝒫 𝐵m 𝒫 𝐵)⟶(𝒫 𝐵m 𝒫 𝐵))
16 neicvg.g . . . . 5 𝐺 = (𝐵𝑂𝒫 𝐵)
175, 6, 7, 16fsovfd 44001 . . . 4 ((𝜑𝐵 ∈ V) → 𝐺:(𝒫 𝒫 𝐵m 𝐵)⟶(𝒫 𝐵m 𝒫 𝐵))
182breqi 5113 . . . . . 6 (𝑁𝐻𝑀𝑁(𝐹 ∘ (𝐷𝐺))𝑀)
193, 18sylib 218 . . . . 5 (𝜑𝑁(𝐹 ∘ (𝐷𝐺))𝑀)
2019adantr 480 . . . 4 ((𝜑𝐵 ∈ V) → 𝑁(𝐹 ∘ (𝐷𝐺))𝑀)
2111, 15, 17, 20brcofffn 44020 . . 3 ((𝜑𝐵 ∈ V) → (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀))
224, 21mpdan 687 . 2 (𝜑 → (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀))
23 simpr2 1196 . . . 4 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)))
24 neicvgel.x . . . . 5 (𝜑𝑋𝐵)
2524adantr 480 . . . 4 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → 𝑋𝐵)
26 neicvgel.s . . . . 5 (𝜑𝑆 ∈ 𝒫 𝐵)
2726adantr 480 . . . 4 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → 𝑆 ∈ 𝒫 𝐵)
2812, 1, 23, 25, 27ntrclselnel1 44046 . . 3 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝑋 ∈ ((𝐺𝑁)‘𝑆) ↔ ¬ 𝑋 ∈ ((𝐷‘(𝐺𝑁))‘(𝐵𝑆))))
29 eqid 2729 . . . 4 (𝒫 𝐵𝑂𝐵) = (𝒫 𝐵𝑂𝐵)
30 simpr1 1195 . . . . 5 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → 𝑁𝐺(𝐺𝑁))
3116breqi 5113 . . . . . . 7 (𝑁𝐺(𝐺𝑁) ↔ 𝑁(𝐵𝑂𝒫 𝐵)(𝐺𝑁))
3231a1i 11 . . . . . 6 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝑁𝐺(𝐺𝑁) ↔ 𝑁(𝐵𝑂𝒫 𝐵)(𝐺𝑁)))
334adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → 𝐵 ∈ V)
34 id 22 . . . . . . . 8 (𝐵 ∈ V → 𝐵 ∈ V)
35 pwexg 5333 . . . . . . . 8 (𝐵 ∈ V → 𝒫 𝐵 ∈ V)
36 eqid 2729 . . . . . . . 8 (𝐵𝑂𝒫 𝐵) = (𝐵𝑂𝒫 𝐵)
375, 34, 35, 36fsovf1od 44005 . . . . . . 7 (𝐵 ∈ V → (𝐵𝑂𝒫 𝐵):(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵))
38 f1orel 6803 . . . . . . 7 ((𝐵𝑂𝒫 𝐵):(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵) → Rel (𝐵𝑂𝒫 𝐵))
39 relbrcnvg 6076 . . . . . . 7 (Rel (𝐵𝑂𝒫 𝐵) → ((𝐺𝑁)(𝐵𝑂𝒫 𝐵)𝑁𝑁(𝐵𝑂𝒫 𝐵)(𝐺𝑁)))
4033, 37, 38, 394syl 19 . . . . . 6 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → ((𝐺𝑁)(𝐵𝑂𝒫 𝐵)𝑁𝑁(𝐵𝑂𝒫 𝐵)(𝐺𝑁)))
415, 34, 35, 36, 29fsovcnvd 44003 . . . . . . . 8 (𝐵 ∈ V → (𝐵𝑂𝒫 𝐵) = (𝒫 𝐵𝑂𝐵))
4241breqd 5118 . . . . . . 7 (𝐵 ∈ V → ((𝐺𝑁)(𝐵𝑂𝒫 𝐵)𝑁 ↔ (𝐺𝑁)(𝒫 𝐵𝑂𝐵)𝑁))
4333, 42syl 17 . . . . . 6 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → ((𝐺𝑁)(𝐵𝑂𝒫 𝐵)𝑁 ↔ (𝐺𝑁)(𝒫 𝐵𝑂𝐵)𝑁))
4432, 40, 433bitr2d 307 . . . . 5 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝑁𝐺(𝐺𝑁) ↔ (𝐺𝑁)(𝒫 𝐵𝑂𝐵)𝑁))
4530, 44mpbid 232 . . . 4 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝐺𝑁)(𝒫 𝐵𝑂𝐵)𝑁)
465, 29, 45, 25, 27ntrneiel 44070 . . 3 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝑋 ∈ ((𝐺𝑁)‘𝑆) ↔ 𝑆 ∈ (𝑁𝑋)))
47 simpr3 1197 . . . . 5 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝐷‘(𝐺𝑁))𝐹𝑀)
48 difssd 4100 . . . . . . 7 (𝜑 → (𝐵𝑆) ⊆ 𝐵)
494, 48sselpwd 5283 . . . . . 6 (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)
5049adantr 480 . . . . 5 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝐵𝑆) ∈ 𝒫 𝐵)
515, 8, 47, 25, 50ntrneiel 44070 . . . 4 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝑋 ∈ ((𝐷‘(𝐺𝑁))‘(𝐵𝑆)) ↔ (𝐵𝑆) ∈ (𝑀𝑋)))
5251notbid 318 . . 3 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (¬ 𝑋 ∈ ((𝐷‘(𝐺𝑁))‘(𝐵𝑆)) ↔ ¬ (𝐵𝑆) ∈ (𝑀𝑋)))
5328, 46, 523bitr3d 309 . 2 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝑆 ∈ (𝑁𝑋) ↔ ¬ (𝐵𝑆) ∈ (𝑀𝑋)))
5422, 53mpdan 687 1 (𝜑 → (𝑆 ∈ (𝑁𝑋) ↔ ¬ (𝐵𝑆) ∈ (𝑀𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  cdif 3911  𝒫 cpw 4563   class class class wbr 5107  cmpt 5188  ccnv 5637  ccom 5642  Rel wrel 5643   Fn wfn 6506  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cmpo 7389  m cmap 8799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801
This theorem is referenced by:  neicvgel2  44109  neicvgfv  44110
  Copyright terms: Public domain W3C validator