![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ococnv1 | Structured version Visualization version GIF version |
Description: The composition of a one-to-one onto function's converse and itself equals the identity relation restricted to the function's domain. (Contributed by NM, 13-Dec-2003.) |
Ref | Expression |
---|---|
f1ococnv1 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1orel 6851 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) | |
2 | dfrel2 6210 | . . . 4 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
3 | 1, 2 | sylib 218 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡◡𝐹 = 𝐹) |
4 | 3 | coeq2d 5875 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 ∘ ◡◡𝐹) = (◡𝐹 ∘ 𝐹)) |
5 | f1ocnv 6860 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
6 | f1ococnv2 6875 | . . 3 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → (◡𝐹 ∘ ◡◡𝐹) = ( I ↾ 𝐴)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 ∘ ◡◡𝐹) = ( I ↾ 𝐴)) |
8 | 4, 7 | eqtr3d 2776 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 I cid 5581 ◡ccnv 5687 ↾ cres 5690 ∘ ccom 5692 Rel wrel 5693 –1-1-onto→wf1o 6561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 |
This theorem is referenced by: f1cocnv1 6878 f1ocnvfv1 7295 fcof1oinvd 7312 mapen 9179 mapfien 9445 hashfacen 14489 setcinv 18143 catcisolem 18163 symggrp 19432 f1omvdco2 19480 rngcinv 20653 ringcinv 20687 pf1mpf 22371 ufldom 23985 motgrp 28565 fmptco1f1o 32649 fcobij 32739 symgfcoeu 33084 pmtrcnel2 33092 cycpmconjslem1 33156 cycpmconjslem2 33157 reprpmtf1o 34619 subfacp1lem5 35168 ltrncoidN 40110 trlcoabs2N 40704 trlcoat 40705 trlcone 40710 cdlemg47 40718 tgrpgrplem 40731 tendoipl 40779 cdlemi2 40801 cdlemk2 40814 cdlemk4 40816 cdlemk8 40820 tendocnv 41003 dvhgrp 41089 cdlemn8 41186 dihopelvalcpre 41230 aks6d1c6lem5 42158 dssmap2d 44011 rngcinvALTV 48119 ringcinvALTV 48153 |
Copyright terms: Public domain | W3C validator |