| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ococnv1 | Structured version Visualization version GIF version | ||
| Description: The composition of a one-to-one onto function's converse and itself equals the identity relation restricted to the function's domain. (Contributed by NM, 13-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1ococnv1 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1orel 6806 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) | |
| 2 | dfrel2 6165 | . . . 4 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
| 3 | 1, 2 | sylib 218 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡◡𝐹 = 𝐹) |
| 4 | 3 | coeq2d 5829 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 ∘ ◡◡𝐹) = (◡𝐹 ∘ 𝐹)) |
| 5 | f1ocnv 6815 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
| 6 | f1ococnv2 6830 | . . 3 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → (◡𝐹 ∘ ◡◡𝐹) = ( I ↾ 𝐴)) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 ∘ ◡◡𝐹) = ( I ↾ 𝐴)) |
| 8 | 4, 7 | eqtr3d 2767 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 I cid 5535 ◡ccnv 5640 ↾ cres 5643 ∘ ccom 5645 Rel wrel 5646 –1-1-onto→wf1o 6513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 |
| This theorem is referenced by: f1cocnv1 6833 f1ocnvfv1 7254 fcof1oinvd 7271 mapen 9111 mapfien 9366 hashfacen 14426 setcinv 18059 catcisolem 18079 symggrp 19337 f1omvdco2 19385 rngcinv 20553 ringcinv 20587 pf1mpf 22246 ufldom 23856 motgrp 28477 fmptco1f1o 32564 fcobij 32652 symgfcoeu 33046 pmtrcnel2 33054 cycpmconjslem1 33118 cycpmconjslem2 33119 reprpmtf1o 34624 subfacp1lem5 35178 ltrncoidN 40129 trlcoabs2N 40723 trlcoat 40724 trlcone 40729 cdlemg47 40737 tgrpgrplem 40750 tendoipl 40798 cdlemi2 40820 cdlemk2 40833 cdlemk4 40835 cdlemk8 40839 tendocnv 41022 dvhgrp 41108 cdlemn8 41205 dihopelvalcpre 41249 aks6d1c6lem5 42172 dssmap2d 44018 rngcinvALTV 48268 ringcinvALTV 48302 |
| Copyright terms: Public domain | W3C validator |