Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1ococnv1 | Structured version Visualization version GIF version |
Description: The composition of a one-to-one onto function's converse and itself equals the identity relation restricted to the function's domain. (Contributed by NM, 13-Dec-2003.) |
Ref | Expression |
---|---|
f1ococnv1 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1orel 6703 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) | |
2 | dfrel2 6081 | . . . 4 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
3 | 1, 2 | sylib 217 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡◡𝐹 = 𝐹) |
4 | 3 | coeq2d 5760 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 ∘ ◡◡𝐹) = (◡𝐹 ∘ 𝐹)) |
5 | f1ocnv 6712 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
6 | f1ococnv2 6726 | . . 3 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → (◡𝐹 ∘ ◡◡𝐹) = ( I ↾ 𝐴)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 ∘ ◡◡𝐹) = ( I ↾ 𝐴)) |
8 | 4, 7 | eqtr3d 2780 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 I cid 5479 ◡ccnv 5579 ↾ cres 5582 ∘ ccom 5584 Rel wrel 5585 –1-1-onto→wf1o 6417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 |
This theorem is referenced by: f1cocnv1 6729 f1ocnvfv1 7129 fcof1oinvd 7145 mapen 8877 mapfien 9097 hashfacen 14094 hashfacenOLD 14095 setcinv 17721 catcisolem 17741 symggrp 18923 f1omvdco2 18971 pf1mpf 21428 ufldom 23021 motgrp 26808 fmptco1f1o 30869 fcobij 30959 symgfcoeu 31253 pmtrcnel2 31261 cycpmconjslem1 31323 cycpmconjslem2 31324 reprpmtf1o 32506 subfacp1lem5 33046 ltrncoidN 38069 trlcoabs2N 38663 trlcoat 38664 trlcone 38669 cdlemg47 38677 tgrpgrplem 38690 tendoipl 38738 cdlemi2 38760 cdlemk2 38773 cdlemk4 38775 cdlemk8 38779 tendocnv 38962 dvhgrp 39048 cdlemn8 39145 dihopelvalcpre 39189 dssmap2d 41519 rngcinv 45427 rngcinvALTV 45439 ringcinv 45478 ringcinvALTV 45502 |
Copyright terms: Public domain | W3C validator |