| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ofun | Structured version Visualization version GIF version | ||
| Description: A one-to-one onto mapping is a function. (Contributed by NM, 12-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1ofun | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofn 6764 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnfun 6581 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fun wfun 6475 Fn wfn 6476 –1-1-onto→wf1o 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6484 df-f 6485 df-f1 6486 df-f1o 6488 |
| This theorem is referenced by: f1orel 6766 f1oresrab 7060 fveqf1o 7236 isofrlem 7274 isofr 7276 isose 7277 f1opw 7602 xpcomco 8980 dif1en 9071 f1opwfi 9240 inlresf 9807 inrresf 9809 djuun 9819 isercolllem2 15573 isercoll 15575 unbenlem 16820 gsumpropd2lem 18587 symgfixf1 19350 tgqtop 23628 hmeontr 23685 reghmph 23709 nrmhmph 23710 tgpconncompeqg 24028 cnheiborlem 24881 dfrelog 26502 dvloglem 26585 logf1o2 26587 axcontlem9 28951 axcontlem10 28952 padct 32699 symgcom 33050 cycpmconjvlem 33108 cycpmconjslem2 33122 madjusmdetlem2 33839 tpr2rico 33923 ballotlemrv 34531 reprpmtf1o 34637 hgt750lemg 34665 subfacp1lem2a 35222 subfacp1lem2b 35223 subfacp1lem5 35226 ismtyres 37854 diaclN 41095 dia1elN 41099 diaintclN 41103 docaclN 41169 dibintclN 41212 cantnf2 43364 permaxun 45050 permac8prim 45053 nregmodellem 45055 sge0f1o 46426 f1oresf1o 47327 grimuhgr 47924 uhgrimisgrgric 47968 |
| Copyright terms: Public domain | W3C validator |