| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ofun | Structured version Visualization version GIF version | ||
| Description: A one-to-one onto mapping is a function. (Contributed by NM, 12-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1ofun | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofn 6801 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnfun 6618 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fun wfun 6505 Fn wfn 6506 –1-1-onto→wf1o 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6514 df-f 6515 df-f1 6516 df-f1o 6518 |
| This theorem is referenced by: f1orel 6803 f1oresrab 7099 fveqf1o 7277 isofrlem 7315 isofr 7317 isose 7318 f1opw 7645 xpcomco 9031 dif1en 9124 dif1enOLD 9126 f1opwfi 9307 inlresf 9867 inrresf 9869 djuun 9879 isercolllem2 15632 isercoll 15634 unbenlem 16879 gsumpropd2lem 18606 symgfixf1 19367 tgqtop 23599 hmeontr 23656 reghmph 23680 nrmhmph 23681 tgpconncompeqg 23999 cnheiborlem 24853 dfrelog 26474 dvloglem 26557 logf1o2 26559 axcontlem9 28899 axcontlem10 28900 padct 32643 symgcom 33040 cycpmconjvlem 33098 cycpmconjslem2 33112 madjusmdetlem2 33818 tpr2rico 33902 ballotlemrv 34511 reprpmtf1o 34617 hgt750lemg 34645 subfacp1lem2a 35167 subfacp1lem2b 35168 subfacp1lem5 35171 ismtyres 37802 diaclN 41044 dia1elN 41048 diaintclN 41052 docaclN 41118 dibintclN 41161 cantnf2 43314 permaxun 45001 permac8prim 45004 nregmodellem 45006 sge0f1o 46380 f1oresf1o 47291 grimuhgr 47887 uhgrimisgrgric 47931 |
| Copyright terms: Public domain | W3C validator |