Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1ofun | Structured version Visualization version GIF version |
Description: A one-to-one onto mapping is a function. (Contributed by NM, 12-Dec-2003.) |
Ref | Expression |
---|---|
f1ofun | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofn 6752 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
2 | fnfun 6569 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Fun wfun 6457 Fn wfn 6458 –1-1-onto→wf1o 6462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-fn 6466 df-f 6467 df-f1 6468 df-f1o 6470 |
This theorem is referenced by: f1orel 6754 f1oresrab 7036 fveqf1o 7212 isofrlem 7248 isofr 7250 isose 7251 f1opw 7563 xpcomco 8902 dif1en 9000 dif1enOLD 9002 f1opwfi 9191 inlresf 9740 inrresf 9742 djuun 9752 isercolllem2 15446 isercoll 15448 unbenlem 16676 gsumpropd2lem 18430 symgfixf1 19112 tgqtop 22934 hmeontr 22991 reghmph 23015 nrmhmph 23016 tgpconncompeqg 23334 cnheiborlem 24188 dfrelog 25792 dvloglem 25874 logf1o2 25876 axcontlem9 27448 axcontlem10 27449 padct 31162 symgcom 31460 cycpmconjvlem 31516 cycpmconjslem2 31530 madjusmdetlem2 31884 tpr2rico 31968 ballotlemrv 32592 reprpmtf1o 32712 hgt750lemg 32740 subfacp1lem2a 33248 subfacp1lem2b 33249 subfacp1lem5 33252 ismtyres 36026 diaclN 39276 dia1elN 39280 diaintclN 39284 docaclN 39350 dibintclN 39393 sge0f1o 44165 f1oresf1o 45041 |
Copyright terms: Public domain | W3C validator |