| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ofun | Structured version Visualization version GIF version | ||
| Description: A one-to-one onto mapping is a function. (Contributed by NM, 12-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1ofun | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofn 6769 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnfun 6586 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fun wfun 6480 Fn wfn 6481 –1-1-onto→wf1o 6485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6489 df-f 6490 df-f1 6491 df-f1o 6493 |
| This theorem is referenced by: f1orel 6771 f1oresrab 7066 fveqf1o 7242 isofrlem 7280 isofr 7282 isose 7283 f1opw 7608 xpcomco 8987 dif1en 9078 f1opwfi 9247 inlresf 9814 inrresf 9816 djuun 9826 isercolllem2 15575 isercoll 15577 unbenlem 16822 gsumpropd2lem 18589 symgfixf1 19351 tgqtop 23628 hmeontr 23685 reghmph 23709 nrmhmph 23710 tgpconncompeqg 24028 cnheiborlem 24881 dfrelog 26502 dvloglem 26585 logf1o2 26587 axcontlem9 28952 axcontlem10 28953 padct 32705 symgcom 33059 cycpmconjvlem 33117 cycpmconjslem2 33131 madjusmdetlem2 33862 tpr2rico 33946 ballotlemrv 34554 reprpmtf1o 34660 hgt750lemg 34688 subfacp1lem2a 35245 subfacp1lem2b 35246 subfacp1lem5 35249 ismtyres 37869 diaclN 41170 dia1elN 41174 diaintclN 41178 docaclN 41244 dibintclN 41287 cantnf2 43443 permaxun 45129 permac8prim 45132 nregmodellem 45134 sge0f1o 46505 f1oresf1o 47415 grimuhgr 48012 uhgrimisgrgric 48056 |
| Copyright terms: Public domain | W3C validator |