| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ofun | Structured version Visualization version GIF version | ||
| Description: A one-to-one onto mapping is a function. (Contributed by NM, 12-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1ofun | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofn 6819 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnfun 6638 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fun wfun 6525 Fn wfn 6526 –1-1-onto→wf1o 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6534 df-f 6535 df-f1 6536 df-f1o 6538 |
| This theorem is referenced by: f1orel 6821 f1oresrab 7117 fveqf1o 7295 isofrlem 7333 isofr 7335 isose 7336 f1opw 7663 xpcomco 9076 dif1en 9174 dif1enOLD 9176 f1opwfi 9368 inlresf 9928 inrresf 9930 djuun 9940 isercolllem2 15682 isercoll 15684 unbenlem 16928 gsumpropd2lem 18657 symgfixf1 19418 tgqtop 23650 hmeontr 23707 reghmph 23731 nrmhmph 23732 tgpconncompeqg 24050 cnheiborlem 24904 dfrelog 26526 dvloglem 26609 logf1o2 26611 axcontlem9 28951 axcontlem10 28952 padct 32697 symgcom 33094 cycpmconjvlem 33152 cycpmconjslem2 33166 madjusmdetlem2 33859 tpr2rico 33943 ballotlemrv 34552 reprpmtf1o 34658 hgt750lemg 34686 subfacp1lem2a 35202 subfacp1lem2b 35203 subfacp1lem5 35206 ismtyres 37832 diaclN 41069 dia1elN 41073 diaintclN 41077 docaclN 41143 dibintclN 41186 cantnf2 43349 permaxun 45036 sge0f1o 46411 f1oresf1o 47319 grimuhgr 47900 uhgrimisgrgric 47944 |
| Copyright terms: Public domain | W3C validator |