![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ofun | Structured version Visualization version GIF version |
Description: A one-to-one onto mapping is a function. (Contributed by NM, 12-Dec-2003.) |
Ref | Expression |
---|---|
f1ofun | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofn 6863 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
2 | fnfun 6679 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Fun wfun 6567 Fn wfn 6568 –1-1-onto→wf1o 6572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6576 df-f 6577 df-f1 6578 df-f1o 6580 |
This theorem is referenced by: f1orel 6865 f1oresrab 7161 fveqf1o 7338 isofrlem 7376 isofr 7378 isose 7379 f1opw 7706 xpcomco 9128 dif1en 9226 dif1enOLD 9228 f1opwfi 9426 inlresf 9983 inrresf 9985 djuun 9995 isercolllem2 15714 isercoll 15716 unbenlem 16955 gsumpropd2lem 18717 symgfixf1 19479 tgqtop 23741 hmeontr 23798 reghmph 23822 nrmhmph 23823 tgpconncompeqg 24141 cnheiborlem 25005 dfrelog 26625 dvloglem 26708 logf1o2 26710 axcontlem9 29005 axcontlem10 29006 padct 32733 symgcom 33076 cycpmconjvlem 33134 cycpmconjslem2 33148 madjusmdetlem2 33774 tpr2rico 33858 ballotlemrv 34484 reprpmtf1o 34603 hgt750lemg 34631 subfacp1lem2a 35148 subfacp1lem2b 35149 subfacp1lem5 35152 ismtyres 37768 diaclN 41007 dia1elN 41011 diaintclN 41015 docaclN 41081 dibintclN 41124 cantnf2 43287 sge0f1o 46303 f1oresf1o 47205 uspgrimprop 47757 grimuhgr 47762 uhgrimisgrgric 47783 |
Copyright terms: Public domain | W3C validator |