MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ofun Structured version   Visualization version   GIF version

Theorem f1ofun 6702
Description: A one-to-one onto mapping is a function. (Contributed by NM, 12-Dec-2003.)
Assertion
Ref Expression
f1ofun (𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)

Proof of Theorem f1ofun
StepHypRef Expression
1 f1ofn 6701 . 2 (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐴)
2 fnfun 6517 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
31, 2syl 17 1 (𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Fun wfun 6412   Fn wfn 6413  1-1-ontowf1o 6417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-fn 6421  df-f 6422  df-f1 6423  df-f1o 6425
This theorem is referenced by:  f1orel  6703  f1oresrab  6981  fveqf1o  7155  isofrlem  7191  isofr  7193  isose  7194  f1opw  7503  xpcomco  8802  dif1en  8907  f1opwfi  9053  inlresf  9603  inrresf  9605  djuun  9615  isercolllem2  15305  isercoll  15307  unbenlem  16537  gsumpropd2lem  18278  symgfixf1  18960  tgqtop  22771  hmeontr  22828  reghmph  22852  nrmhmph  22853  tgpconncompeqg  23171  cnheiborlem  24023  dfrelog  25626  dvloglem  25708  logf1o2  25710  axcontlem9  27243  axcontlem10  27244  padct  30956  symgcom  31254  cycpmconjvlem  31310  cycpmconjslem2  31324  madjusmdetlem2  31680  tpr2rico  31764  ballotlemrv  32386  reprpmtf1o  32506  hgt750lemg  32534  subfacp1lem2a  33042  subfacp1lem2b  33043  subfacp1lem5  33046  ismtyres  35893  diaclN  38991  dia1elN  38995  diaintclN  38999  docaclN  39065  dibintclN  39108  sge0f1o  43810  f1oresf1o  44669
  Copyright terms: Public domain W3C validator