![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ofun | Structured version Visualization version GIF version |
Description: A one-to-one onto mapping is a function. (Contributed by NM, 12-Dec-2003.) |
Ref | Expression |
---|---|
f1ofun | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofn 6850 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
2 | fnfun 6669 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Fun wfun 6557 Fn wfn 6558 –1-1-onto→wf1o 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6566 df-f 6567 df-f1 6568 df-f1o 6570 |
This theorem is referenced by: f1orel 6852 f1oresrab 7147 fveqf1o 7322 isofrlem 7360 isofr 7362 isose 7363 f1opw 7689 xpcomco 9101 dif1en 9199 dif1enOLD 9201 f1opwfi 9394 inlresf 9952 inrresf 9954 djuun 9964 isercolllem2 15699 isercoll 15701 unbenlem 16942 gsumpropd2lem 18705 symgfixf1 19470 tgqtop 23736 hmeontr 23793 reghmph 23817 nrmhmph 23818 tgpconncompeqg 24136 cnheiborlem 25000 dfrelog 26622 dvloglem 26705 logf1o2 26707 axcontlem9 29002 axcontlem10 29003 padct 32737 symgcom 33086 cycpmconjvlem 33144 cycpmconjslem2 33158 madjusmdetlem2 33789 tpr2rico 33873 ballotlemrv 34501 reprpmtf1o 34620 hgt750lemg 34648 subfacp1lem2a 35165 subfacp1lem2b 35166 subfacp1lem5 35169 ismtyres 37795 diaclN 41033 dia1elN 41037 diaintclN 41041 docaclN 41107 dibintclN 41150 cantnf2 43315 sge0f1o 46338 f1oresf1o 47240 uspgrimprop 47811 grimuhgr 47816 uhgrimisgrgric 47837 |
Copyright terms: Public domain | W3C validator |