| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ofun | Structured version Visualization version GIF version | ||
| Description: A one-to-one onto mapping is a function. (Contributed by NM, 12-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1ofun | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofn 6769 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnfun 6586 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fun wfun 6480 Fn wfn 6481 –1-1-onto→wf1o 6485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6489 df-f 6490 df-f1 6491 df-f1o 6493 |
| This theorem is referenced by: f1orel 6771 f1oresrab 7065 fveqf1o 7243 isofrlem 7281 isofr 7283 isose 7284 f1opw 7609 xpcomco 8991 dif1en 9084 dif1enOLD 9086 f1opwfi 9265 inlresf 9829 inrresf 9831 djuun 9841 isercolllem2 15591 isercoll 15593 unbenlem 16838 gsumpropd2lem 18571 symgfixf1 19334 tgqtop 23615 hmeontr 23672 reghmph 23696 nrmhmph 23697 tgpconncompeqg 24015 cnheiborlem 24869 dfrelog 26490 dvloglem 26573 logf1o2 26575 axcontlem9 28935 axcontlem10 28936 padct 32676 symgcom 33038 cycpmconjvlem 33096 cycpmconjslem2 33110 madjusmdetlem2 33794 tpr2rico 33878 ballotlemrv 34487 reprpmtf1o 34593 hgt750lemg 34621 subfacp1lem2a 35152 subfacp1lem2b 35153 subfacp1lem5 35156 ismtyres 37787 diaclN 41029 dia1elN 41033 diaintclN 41037 docaclN 41103 dibintclN 41146 cantnf2 43298 permaxun 44985 permac8prim 44988 nregmodellem 44990 sge0f1o 46364 f1oresf1o 47275 grimuhgr 47872 uhgrimisgrgric 47916 |
| Copyright terms: Public domain | W3C validator |