| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ofun | Structured version Visualization version GIF version | ||
| Description: A one-to-one onto mapping is a function. (Contributed by NM, 12-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1ofun | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofn 6804 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnfun 6621 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fun wfun 6508 Fn wfn 6509 –1-1-onto→wf1o 6513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6517 df-f 6518 df-f1 6519 df-f1o 6521 |
| This theorem is referenced by: f1orel 6806 f1oresrab 7102 fveqf1o 7280 isofrlem 7318 isofr 7320 isose 7321 f1opw 7648 xpcomco 9036 dif1en 9130 dif1enOLD 9132 f1opwfi 9314 inlresf 9874 inrresf 9876 djuun 9886 isercolllem2 15639 isercoll 15641 unbenlem 16886 gsumpropd2lem 18613 symgfixf1 19374 tgqtop 23606 hmeontr 23663 reghmph 23687 nrmhmph 23688 tgpconncompeqg 24006 cnheiborlem 24860 dfrelog 26481 dvloglem 26564 logf1o2 26566 axcontlem9 28906 axcontlem10 28907 padct 32650 symgcom 33047 cycpmconjvlem 33105 cycpmconjslem2 33119 madjusmdetlem2 33825 tpr2rico 33909 ballotlemrv 34518 reprpmtf1o 34624 hgt750lemg 34652 subfacp1lem2a 35174 subfacp1lem2b 35175 subfacp1lem5 35178 ismtyres 37809 diaclN 41051 dia1elN 41055 diaintclN 41059 docaclN 41125 dibintclN 41168 cantnf2 43321 permaxun 45008 permac8prim 45011 nregmodellem 45013 sge0f1o 46387 f1oresf1o 47295 grimuhgr 47891 uhgrimisgrgric 47935 |
| Copyright terms: Public domain | W3C validator |