Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1ofun | Structured version Visualization version GIF version |
Description: A one-to-one onto mapping is a function. (Contributed by NM, 12-Dec-2003.) |
Ref | Expression |
---|---|
f1ofun | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofn 6726 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
2 | fnfun 6542 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Fun wfun 6431 Fn wfn 6432 –1-1-onto→wf1o 6436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-fn 6440 df-f 6441 df-f1 6442 df-f1o 6444 |
This theorem is referenced by: f1orel 6728 f1oresrab 7008 fveqf1o 7184 isofrlem 7220 isofr 7222 isose 7223 f1opw 7534 xpcomco 8858 dif1en 8954 f1opwfi 9132 inlresf 9681 inrresf 9683 djuun 9693 isercolllem2 15386 isercoll 15388 unbenlem 16618 gsumpropd2lem 18372 symgfixf1 19054 tgqtop 22872 hmeontr 22929 reghmph 22953 nrmhmph 22954 tgpconncompeqg 23272 cnheiborlem 24126 dfrelog 25730 dvloglem 25812 logf1o2 25814 axcontlem9 27349 axcontlem10 27350 padct 31063 symgcom 31361 cycpmconjvlem 31417 cycpmconjslem2 31431 madjusmdetlem2 31787 tpr2rico 31871 ballotlemrv 32495 reprpmtf1o 32615 hgt750lemg 32643 subfacp1lem2a 33151 subfacp1lem2b 33152 subfacp1lem5 33155 ismtyres 35975 diaclN 39071 dia1elN 39075 diaintclN 39079 docaclN 39145 dibintclN 39188 sge0f1o 43927 f1oresf1o 44793 |
Copyright terms: Public domain | W3C validator |