Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1ofun | Structured version Visualization version GIF version |
Description: A one-to-one onto mapping is a function. (Contributed by NM, 12-Dec-2003.) |
Ref | Expression |
---|---|
f1ofun | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofn 6701 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
2 | fnfun 6517 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Fun wfun 6412 Fn wfn 6413 –1-1-onto→wf1o 6417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-fn 6421 df-f 6422 df-f1 6423 df-f1o 6425 |
This theorem is referenced by: f1orel 6703 f1oresrab 6981 fveqf1o 7155 isofrlem 7191 isofr 7193 isose 7194 f1opw 7503 xpcomco 8802 dif1en 8907 f1opwfi 9053 inlresf 9603 inrresf 9605 djuun 9615 isercolllem2 15305 isercoll 15307 unbenlem 16537 gsumpropd2lem 18278 symgfixf1 18960 tgqtop 22771 hmeontr 22828 reghmph 22852 nrmhmph 22853 tgpconncompeqg 23171 cnheiborlem 24023 dfrelog 25626 dvloglem 25708 logf1o2 25710 axcontlem9 27243 axcontlem10 27244 padct 30956 symgcom 31254 cycpmconjvlem 31310 cycpmconjslem2 31324 madjusmdetlem2 31680 tpr2rico 31764 ballotlemrv 32386 reprpmtf1o 32506 hgt750lemg 32534 subfacp1lem2a 33042 subfacp1lem2b 33043 subfacp1lem5 33046 ismtyres 35893 diaclN 38991 dia1elN 38995 diaintclN 38999 docaclN 39065 dibintclN 39108 sge0f1o 43810 f1oresf1o 44669 |
Copyright terms: Public domain | W3C validator |