Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1odm | Structured version Visualization version GIF version |
Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
f1odm | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofn 6768 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
2 | fndm 6588 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 dom cdm 5620 Fn wfn 6474 –1-1-onto→wf1o 6478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-fn 6482 df-f 6483 df-f1 6484 df-f1o 6486 |
This theorem is referenced by: f1imacnv 6783 f1opw2 7586 xpcomco 8927 domss2 9001 mapen 9006 ssenen 9016 phplem2 9073 php3 9077 phplem4OLD 9085 php3OLD 9089 f1opwfi 9221 unxpwdom2 9445 cnfcomlem 9556 djuun 9783 ackbij2lem2 10097 ackbij2lem3 10098 fin4en1 10166 enfin2i 10178 hashfacenOLD 14267 gsumpropd2lem 18460 symgfixf1 19141 f1omvdmvd 19147 f1omvdconj 19150 pmtrfb 19169 symggen 19174 symggen2 19175 psgnunilem1 19197 basqtop 22968 reghmph 23050 nrmhmph 23051 indishmph 23055 ordthmeolem 23058 ufldom 23219 tgpconncompeqg 23369 imasf1oxms 23751 icchmeo 24210 dvcvx 25290 dvloglem 25909 f1ocnt 31410 cycpmconjvlem 31695 cycpmconjslem2 31709 madjusmdetlem2 32076 madjusmdetlem4 32078 tpr2rico 32160 ballotlemrv 32786 reprpmtf1o 32906 hgt750lemg 32934 subfacp1lem2b 33442 subfacp1lem5 33445 poimirlem3 35885 ismtyres 36071 eldioph2lem1 40844 lnmlmic 41176 ntrclsiex 41984 ntrneiiex 42007 ssnnf1octb 43060 f1oresf1o 45133 |
Copyright terms: Public domain | W3C validator |