![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1odm | Structured version Visualization version GIF version |
Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
f1odm | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofn 6849 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
2 | fndm 6671 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 dom cdm 5688 Fn wfn 6557 –1-1-onto→wf1o 6561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6565 df-f 6566 df-f1 6567 df-f1o 6569 |
This theorem is referenced by: f1imacnv 6864 f1ounsn 7291 f1opw2 7687 xpcomco 9100 domss2 9174 mapen 9179 ssenen 9189 phplem2 9242 php3 9246 phplem4OLD 9254 php3OLD 9258 f1opwfi 9393 unxpwdom2 9625 cnfcomlem 9736 djuun 9963 ackbij2lem2 10276 ackbij2lem3 10277 fin4en1 10346 enfin2i 10358 gsumpropd2lem 18704 symgfixf1 19469 f1omvdmvd 19475 f1omvdconj 19478 pmtrfb 19497 symggen 19502 symggen2 19503 psgnunilem1 19525 basqtop 23734 reghmph 23816 nrmhmph 23817 indishmph 23821 ordthmeolem 23824 ufldom 23985 tgpconncompeqg 24135 imasf1oxms 24517 icchmeo 24984 icchmeoOLD 24985 dvcvx 26073 dvloglem 26704 f1ocnt 32809 cycpmconjvlem 33143 cycpmconjslem2 33157 madjusmdetlem2 33788 madjusmdetlem4 33790 tpr2rico 33872 ballotlemrv 34500 reprpmtf1o 34619 hgt750lemg 34647 subfacp1lem2b 35165 subfacp1lem5 35168 poimirlem3 37609 ismtyres 37794 eldioph2lem1 42747 lnmlmic 43076 ntrclsiex 44042 ntrneiiex 44065 ssnnf1octb 45136 f1oresf1o 47239 grimuhgr 47815 isubgr3stgrlem3 47870 |
Copyright terms: Public domain | W3C validator |