| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1odm | Structured version Visualization version GIF version | ||
| Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| f1odm | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofn 6769 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fndm 6589 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 dom cdm 5619 Fn wfn 6481 –1-1-onto→wf1o 6485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6489 df-f 6490 df-f1 6491 df-f1o 6493 |
| This theorem is referenced by: f1imacnv 6784 f1ounsn 7212 f1opw2 7607 xpcomco 8987 domss2 9056 mapen 9061 ssenen 9071 phplem2 9121 php3 9125 f1opwfi 9247 unxpwdom2 9481 cnfcomlem 9596 djuun 9826 ackbij2lem2 10137 ackbij2lem3 10138 fin4en1 10207 enfin2i 10219 gsumpropd2lem 18589 symgfixf1 19351 f1omvdmvd 19357 f1omvdconj 19360 pmtrfb 19379 symggen 19384 symggen2 19385 psgnunilem1 19407 basqtop 23627 reghmph 23709 nrmhmph 23710 indishmph 23714 ordthmeolem 23717 ufldom 23878 tgpconncompeqg 24028 imasf1oxms 24405 icchmeo 24866 icchmeoOLD 24867 dvcvx 25953 dvloglem 26585 f1ocnt 32787 cycpmconjvlem 33117 cycpmconjslem2 33131 madjusmdetlem2 33862 madjusmdetlem4 33864 tpr2rico 33946 ballotlemrv 34554 reprpmtf1o 34660 hgt750lemg 34688 vonf1owev 35173 subfacp1lem2b 35246 subfacp1lem5 35249 poimirlem3 37684 ismtyres 37869 eldioph2lem1 42878 lnmlmic 43206 ntrclsiex 44171 ntrneiiex 44194 ssnnf1octb 45316 f1oresf1o 47415 grimuhgr 48012 isubgr3stgrlem3 48093 |
| Copyright terms: Public domain | W3C validator |