Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1odm | Structured version Visualization version GIF version |
Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
f1odm | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofn 6717 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
2 | fndm 6536 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 dom cdm 5589 Fn wfn 6428 –1-1-onto→wf1o 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-fn 6436 df-f 6437 df-f1 6438 df-f1o 6440 |
This theorem is referenced by: f1imacnv 6732 f1opw2 7524 xpcomco 8849 domss2 8923 mapen 8928 ssenen 8938 phplem2 8991 php3 8995 phplem4OLD 9003 php3OLD 9007 f1opwfi 9123 unxpwdom2 9347 cnfcomlem 9457 djuun 9684 ackbij2lem2 9996 ackbij2lem3 9997 fin4en1 10065 enfin2i 10077 hashfacenOLD 14167 gsumpropd2lem 18363 symgfixf1 19045 f1omvdmvd 19051 f1omvdconj 19054 pmtrfb 19073 symggen 19078 symggen2 19079 psgnunilem1 19101 basqtop 22862 reghmph 22944 nrmhmph 22945 indishmph 22949 ordthmeolem 22952 ufldom 23113 tgpconncompeqg 23263 imasf1oxms 23645 icchmeo 24104 dvcvx 25184 dvloglem 25803 f1ocnt 31123 cycpmconjvlem 31408 cycpmconjslem2 31422 madjusmdetlem2 31778 madjusmdetlem4 31780 tpr2rico 31862 ballotlemrv 32486 reprpmtf1o 32606 hgt750lemg 32634 subfacp1lem2b 33143 subfacp1lem5 33146 poimirlem3 35780 ismtyres 35966 eldioph2lem1 40582 lnmlmic 40913 ntrclsiex 41663 ntrneiiex 41686 ssnnf1octb 42733 f1oresf1o 44782 |
Copyright terms: Public domain | W3C validator |