| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1odm | Structured version Visualization version GIF version | ||
| Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| f1odm | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofn 6804 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fndm 6624 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 dom cdm 5641 Fn wfn 6509 –1-1-onto→wf1o 6513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6517 df-f 6518 df-f1 6519 df-f1o 6521 |
| This theorem is referenced by: f1imacnv 6819 f1ounsn 7250 f1opw2 7647 xpcomco 9036 domss2 9106 mapen 9111 ssenen 9121 phplem2 9175 php3 9179 f1opwfi 9314 unxpwdom2 9548 cnfcomlem 9659 djuun 9886 ackbij2lem2 10199 ackbij2lem3 10200 fin4en1 10269 enfin2i 10281 gsumpropd2lem 18613 symgfixf1 19374 f1omvdmvd 19380 f1omvdconj 19383 pmtrfb 19402 symggen 19407 symggen2 19408 psgnunilem1 19430 basqtop 23605 reghmph 23687 nrmhmph 23688 indishmph 23692 ordthmeolem 23695 ufldom 23856 tgpconncompeqg 24006 imasf1oxms 24384 icchmeo 24845 icchmeoOLD 24846 dvcvx 25932 dvloglem 26564 f1ocnt 32732 cycpmconjvlem 33105 cycpmconjslem2 33119 madjusmdetlem2 33825 madjusmdetlem4 33827 tpr2rico 33909 ballotlemrv 34518 reprpmtf1o 34624 hgt750lemg 34652 vonf1owev 35102 subfacp1lem2b 35175 subfacp1lem5 35178 poimirlem3 37624 ismtyres 37809 eldioph2lem1 42755 lnmlmic 43084 ntrclsiex 44049 ntrneiiex 44072 ssnnf1octb 45195 f1oresf1o 47295 grimuhgr 47891 isubgr3stgrlem3 47971 |
| Copyright terms: Public domain | W3C validator |