| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1odm | Structured version Visualization version GIF version | ||
| Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| f1odm | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofn 6764 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fndm 6584 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 dom cdm 5616 Fn wfn 6476 –1-1-onto→wf1o 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6484 df-f 6485 df-f1 6486 df-f1o 6488 |
| This theorem is referenced by: f1imacnv 6779 f1ounsn 7206 f1opw2 7601 xpcomco 8980 domss2 9049 mapen 9054 ssenen 9064 phplem2 9114 php3 9118 f1opwfi 9240 unxpwdom2 9474 cnfcomlem 9589 djuun 9819 ackbij2lem2 10130 ackbij2lem3 10131 fin4en1 10200 enfin2i 10212 gsumpropd2lem 18587 symgfixf1 19350 f1omvdmvd 19356 f1omvdconj 19359 pmtrfb 19378 symggen 19383 symggen2 19384 psgnunilem1 19406 basqtop 23627 reghmph 23709 nrmhmph 23710 indishmph 23714 ordthmeolem 23717 ufldom 23878 tgpconncompeqg 24028 imasf1oxms 24405 icchmeo 24866 icchmeoOLD 24867 dvcvx 25953 dvloglem 26585 f1ocnt 32780 cycpmconjvlem 33108 cycpmconjslem2 33122 madjusmdetlem2 33839 madjusmdetlem4 33841 tpr2rico 33923 ballotlemrv 34531 reprpmtf1o 34637 hgt750lemg 34665 vonf1owev 35150 subfacp1lem2b 35223 subfacp1lem5 35226 poimirlem3 37669 ismtyres 37854 eldioph2lem1 42799 lnmlmic 43127 ntrclsiex 44092 ntrneiiex 44115 ssnnf1octb 45237 f1oresf1o 47327 grimuhgr 47924 isubgr3stgrlem3 48005 |
| Copyright terms: Public domain | W3C validator |