| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1odm | Structured version Visualization version GIF version | ||
| Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| f1odm | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofn 6801 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fndm 6621 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 dom cdm 5638 Fn wfn 6506 –1-1-onto→wf1o 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6514 df-f 6515 df-f1 6516 df-f1o 6518 |
| This theorem is referenced by: f1imacnv 6816 f1ounsn 7247 f1opw2 7644 xpcomco 9031 domss2 9100 mapen 9105 ssenen 9115 phplem2 9169 php3 9173 f1opwfi 9307 unxpwdom2 9541 cnfcomlem 9652 djuun 9879 ackbij2lem2 10192 ackbij2lem3 10193 fin4en1 10262 enfin2i 10274 gsumpropd2lem 18606 symgfixf1 19367 f1omvdmvd 19373 f1omvdconj 19376 pmtrfb 19395 symggen 19400 symggen2 19401 psgnunilem1 19423 basqtop 23598 reghmph 23680 nrmhmph 23681 indishmph 23685 ordthmeolem 23688 ufldom 23849 tgpconncompeqg 23999 imasf1oxms 24377 icchmeo 24838 icchmeoOLD 24839 dvcvx 25925 dvloglem 26557 f1ocnt 32725 cycpmconjvlem 33098 cycpmconjslem2 33112 madjusmdetlem2 33818 madjusmdetlem4 33820 tpr2rico 33902 ballotlemrv 34511 reprpmtf1o 34617 hgt750lemg 34645 vonf1owev 35095 subfacp1lem2b 35168 subfacp1lem5 35171 poimirlem3 37617 ismtyres 37802 eldioph2lem1 42748 lnmlmic 43077 ntrclsiex 44042 ntrneiiex 44065 ssnnf1octb 45188 f1oresf1o 47291 grimuhgr 47887 isubgr3stgrlem3 47967 |
| Copyright terms: Public domain | W3C validator |