Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1odm | Structured version Visualization version GIF version |
Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
f1odm | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofn 6701 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
2 | fndm 6520 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 dom cdm 5580 Fn wfn 6413 –1-1-onto→wf1o 6417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-fn 6421 df-f 6422 df-f1 6423 df-f1o 6425 |
This theorem is referenced by: f1imacnv 6716 f1opw2 7502 xpcomco 8802 domss2 8872 mapen 8877 ssenen 8887 phplem4 8895 php3 8899 f1opwfi 9053 unxpwdom2 9277 cnfcomlem 9387 djuun 9615 ackbij2lem2 9927 ackbij2lem3 9928 fin4en1 9996 enfin2i 10008 hashfacenOLD 14095 gsumpropd2lem 18278 symgfixf1 18960 f1omvdmvd 18966 f1omvdconj 18969 pmtrfb 18988 symggen 18993 symggen2 18994 psgnunilem1 19016 basqtop 22770 reghmph 22852 nrmhmph 22853 indishmph 22857 ordthmeolem 22860 ufldom 23021 tgpconncompeqg 23171 imasf1oxms 23551 icchmeo 24010 dvcvx 25089 dvloglem 25708 f1ocnt 31025 cycpmconjvlem 31310 cycpmconjslem2 31324 madjusmdetlem2 31680 madjusmdetlem4 31682 tpr2rico 31764 ballotlemrv 32386 reprpmtf1o 32506 hgt750lemg 32534 subfacp1lem2b 33043 subfacp1lem5 33046 poimirlem3 35707 ismtyres 35893 eldioph2lem1 40498 lnmlmic 40829 ntrclsiex 41552 ntrneiiex 41575 ssnnf1octb 42622 f1oresf1o 44669 |
Copyright terms: Public domain | W3C validator |