![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1odm | Structured version Visualization version GIF version |
Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
f1odm | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofn 6863 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
2 | fndm 6682 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 dom cdm 5700 Fn wfn 6568 –1-1-onto→wf1o 6572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6576 df-f 6577 df-f1 6578 df-f1o 6580 |
This theorem is referenced by: f1imacnv 6878 f1opw2 7705 xpcomco 9128 domss2 9202 mapen 9207 ssenen 9217 phplem2 9271 php3 9275 phplem4OLD 9283 php3OLD 9287 f1opwfi 9426 unxpwdom2 9657 cnfcomlem 9768 djuun 9995 ackbij2lem2 10308 ackbij2lem3 10309 fin4en1 10378 enfin2i 10390 gsumpropd2lem 18717 symgfixf1 19479 f1omvdmvd 19485 f1omvdconj 19488 pmtrfb 19507 symggen 19512 symggen2 19513 psgnunilem1 19535 basqtop 23740 reghmph 23822 nrmhmph 23823 indishmph 23827 ordthmeolem 23830 ufldom 23991 tgpconncompeqg 24141 imasf1oxms 24523 icchmeo 24990 icchmeoOLD 24991 dvcvx 26079 dvloglem 26708 f1ocnt 32807 cycpmconjvlem 33134 cycpmconjslem2 33148 madjusmdetlem2 33774 madjusmdetlem4 33776 tpr2rico 33858 ballotlemrv 34484 reprpmtf1o 34603 hgt750lemg 34631 subfacp1lem2b 35149 subfacp1lem5 35152 poimirlem3 37583 ismtyres 37768 eldioph2lem1 42716 lnmlmic 43045 ntrclsiex 44015 ntrneiiex 44038 ssnnf1octb 45101 f1oresf1o 47205 grimuhgr 47762 |
Copyright terms: Public domain | W3C validator |