| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1odm | Structured version Visualization version GIF version | ||
| Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| f1odm | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofn 6819 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fndm 6641 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 dom cdm 5654 Fn wfn 6526 –1-1-onto→wf1o 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6534 df-f 6535 df-f1 6536 df-f1o 6538 |
| This theorem is referenced by: f1imacnv 6834 f1ounsn 7265 f1opw2 7662 xpcomco 9076 domss2 9150 mapen 9155 ssenen 9165 phplem2 9219 php3 9223 php3OLD 9233 f1opwfi 9368 unxpwdom2 9602 cnfcomlem 9713 djuun 9940 ackbij2lem2 10253 ackbij2lem3 10254 fin4en1 10323 enfin2i 10335 gsumpropd2lem 18657 symgfixf1 19418 f1omvdmvd 19424 f1omvdconj 19427 pmtrfb 19446 symggen 19451 symggen2 19452 psgnunilem1 19474 basqtop 23649 reghmph 23731 nrmhmph 23732 indishmph 23736 ordthmeolem 23739 ufldom 23900 tgpconncompeqg 24050 imasf1oxms 24428 icchmeo 24889 icchmeoOLD 24890 dvcvx 25977 dvloglem 26609 f1ocnt 32779 cycpmconjvlem 33152 cycpmconjslem2 33166 madjusmdetlem2 33859 madjusmdetlem4 33861 tpr2rico 33943 ballotlemrv 34552 reprpmtf1o 34658 hgt750lemg 34686 subfacp1lem2b 35203 subfacp1lem5 35206 poimirlem3 37647 ismtyres 37832 eldioph2lem1 42783 lnmlmic 43112 ntrclsiex 44077 ntrneiiex 44100 ssnnf1octb 45218 f1oresf1o 47319 grimuhgr 47900 isubgr3stgrlem3 47980 |
| Copyright terms: Public domain | W3C validator |