Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclsiex | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then those functions are maps of subsets to subsets. (Contributed by RP, 21-May-2021.) |
Ref | Expression |
---|---|
ntrcls.o | ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
ntrcls.d | ⊢ 𝐷 = (𝑂‘𝐵) |
ntrcls.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
Ref | Expression |
---|---|
ntrclsiex | ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrcls.o | . . . . 5 ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | |
2 | ntrcls.d | . . . . 5 ⊢ 𝐷 = (𝑂‘𝐵) | |
3 | ntrcls.r | . . . . 5 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
4 | 1, 2, 3 | ntrclsf1o 41661 | . . . 4 ⊢ (𝜑 → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) |
5 | f1orel 6719 | . . . 4 ⊢ (𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵) → Rel 𝐷) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → Rel 𝐷) |
7 | releldm 5853 | . . 3 ⊢ ((Rel 𝐷 ∧ 𝐼𝐷𝐾) → 𝐼 ∈ dom 𝐷) | |
8 | 6, 3, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐼 ∈ dom 𝐷) |
9 | f1odm 6720 | . . 3 ⊢ (𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵) → dom 𝐷 = (𝒫 𝐵 ↑m 𝒫 𝐵)) | |
10 | 4, 9 | syl 17 | . 2 ⊢ (𝜑 → dom 𝐷 = (𝒫 𝐵 ↑m 𝒫 𝐵)) |
11 | 8, 10 | eleqtrd 2841 | 1 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∖ cdif 3884 𝒫 cpw 4533 class class class wbr 5074 ↦ cmpt 5157 dom cdm 5589 Rel wrel 5594 –1-1-onto→wf1o 6432 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-map 8617 |
This theorem is referenced by: ntrclskex 41664 ntrclsfv1 41665 ntrclsfveq2 41671 ntrclscls00 41676 ntrclsiso 41677 ntrclsk2 41678 ntrclskb 41679 ntrclsk3 41680 ntrclsk13 41681 ntrclsk4 41682 clsneikex 41716 |
Copyright terms: Public domain | W3C validator |