| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fimassd | Structured version Visualization version GIF version | ||
| Description: The image of a class is a subset of its codomain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| fimassd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| fimassd | ⊢ (𝜑 → (𝐹 “ 𝑋) ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fimassd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | fimass 6671 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 “ 𝑋) ⊆ 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹 “ 𝑋) ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3902 “ cima 5619 ⟶wf 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-f 6485 |
| This theorem is referenced by: rprmdvdsprod 33497 vonf1owev 35150 weiunfrlem 36504 weiunfr 36507 imo72b2lem0 44204 limsupval3 45736 limsupmnflem 45764 liminfval5 45809 sge0f1o 46426 grimuhgr 47924 uhgrimisgrgric 47968 isubgr3stgrlem6 48008 imasubc 49189 imassc 49191 |
| Copyright terms: Public domain | W3C validator |