MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimassd Structured version   Visualization version   GIF version

Theorem fimassd 6758
Description: The image of a class is a subset of its codomain. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
fimassd.1 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
fimassd (𝜑 → (𝐹𝑋) ⊆ 𝐵)

Proof of Theorem fimassd
StepHypRef Expression
1 fimassd.1 . 2 (𝜑𝐹:𝐴𝐵)
2 fimass 6757 . 2 (𝐹:𝐴𝐵 → (𝐹𝑋) ⊆ 𝐵)
31, 2syl 17 1 (𝜑 → (𝐹𝑋) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3963  cima 5692  wf 6559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-f 6567
This theorem is referenced by:  rprmdvdsprod  33542  weiunfrlem  36447  weiunfr  36450  imo72b2lem0  44155  limsupval3  45648  limsupmnflem  45676  liminfval5  45721  sge0f1o  46338  grimuhgr  47816  uhgrimisgrgric  47837  isubgr3stgrlem6  47874
  Copyright terms: Public domain W3C validator