Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fimassd Structured version   Visualization version   GIF version

Theorem fimassd 42660
Description: The image of a class is a subset of its codomain. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
fimassd.1 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
fimassd (𝜑 → (𝐹𝑋) ⊆ 𝐵)

Proof of Theorem fimassd
StepHypRef Expression
1 fimassd.1 . 2 (𝜑𝐹:𝐴𝐵)
2 fimass 6605 . 2 (𝐹:𝐴𝐵 → (𝐹𝑋) ⊆ 𝐵)
31, 2syl 17 1 (𝜑 → (𝐹𝑋) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3883  cima 5583  wf 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-f 6422
This theorem is referenced by:  limsupval3  43123  limsupmnflem  43151  liminfval5  43196
  Copyright terms: Public domain W3C validator