MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimass Structured version   Visualization version   GIF version

Theorem fimass 6619
Description: The image of a class under a function with domain and codomain is a subset of its codomain. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
fimass (𝐹:𝐴𝐵 → (𝐹𝑋) ⊆ 𝐵)

Proof of Theorem fimass
StepHypRef Expression
1 imassrn 5979 . 2 (𝐹𝑋) ⊆ ran 𝐹
2 frn 6605 . 2 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
31, 2sstrid 3937 1 (𝐹:𝐴𝐵 → (𝐹𝑋) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3892  ran crn 5591  cima 5593  wf 6428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-br 5080  df-opab 5142  df-xp 5596  df-cnv 5598  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-f 6436
This theorem is referenced by:  fimacnvOLD  6945  f1imaen2g  8784  domunsncan  8841  fissuni  9102  fipreima  9103  carduniima  9853  psgnunilem1  19099  fbasrn  23033  imaelfm  23100  wlkres  28035  trlreslem  28064  fimarab  30976  tocyccntz  31407  rhmimaidl  31605  nummin  33059  fimassd  42741  limsupvaluz  43220  sge0f1o  43891  fundcmpsurbijinjpreimafv  44828  fundcmpsurinjimaid  44832
  Copyright terms: Public domain W3C validator