MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimass Structured version   Visualization version   GIF version

Theorem fimass 6671
Description: The image of a class under a function with domain and codomain is a subset of its codomain. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
fimass (𝐹:𝐴𝐵 → (𝐹𝑋) ⊆ 𝐵)

Proof of Theorem fimass
StepHypRef Expression
1 imassrn 6019 . 2 (𝐹𝑋) ⊆ ran 𝐹
2 frn 6658 . 2 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
31, 2sstrid 3941 1 (𝐹:𝐴𝐵 → (𝐹𝑋) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3897  ran crn 5615  cima 5617  wf 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-f 6485
This theorem is referenced by:  fimassd  6672  fimarab  6896  f1imaen2g  8937  domunsncan  8990  fissuni  9241  fipreima  9242  carduniima  9987  psgnunilem1  19405  fbasrn  23799  imaelfm  23866  wlkres  29647  trlreslem  29676  tocyccntz  33113  rhmimaidl  33397  nummin  35104  hashscontpowcl  42223  relpfrlem  45056  limsupvaluz  45816  fundcmpsurbijinjpreimafv  47517  fundcmpsurinjimaid  47521
  Copyright terms: Public domain W3C validator