| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fimass | Structured version Visualization version GIF version | ||
| Description: The image of a class under a function with domain and codomain is a subset of its codomain. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| fimass | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 “ 𝑋) ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 6045 | . 2 ⊢ (𝐹 “ 𝑋) ⊆ ran 𝐹 | |
| 2 | frn 6698 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 3 | 1, 2 | sstrid 3961 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 “ 𝑋) ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3917 ran crn 5642 “ cima 5644 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-f 6518 |
| This theorem is referenced by: fimassd 6712 fimarab 6938 f1imaen2g 8989 domunsncan 9046 fissuni 9315 fipreima 9316 carduniima 10056 psgnunilem1 19430 fbasrn 23778 imaelfm 23845 wlkres 29605 trlreslem 29634 tocyccntz 33108 rhmimaidl 33410 nummin 35088 hashscontpowcl 42115 relpfrlem 44950 limsupvaluz 45713 fundcmpsurbijinjpreimafv 47412 fundcmpsurinjimaid 47416 |
| Copyright terms: Public domain | W3C validator |