MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimass Structured version   Visualization version   GIF version

Theorem fimass 6757
Description: The image of a class under a function with domain and codomain is a subset of its codomain. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
fimass (𝐹:𝐴𝐵 → (𝐹𝑋) ⊆ 𝐵)

Proof of Theorem fimass
StepHypRef Expression
1 imassrn 6091 . 2 (𝐹𝑋) ⊆ ran 𝐹
2 frn 6744 . 2 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
31, 2sstrid 4007 1 (𝐹:𝐴𝐵 → (𝐹𝑋) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3963  ran crn 5690  cima 5692  wf 6559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-f 6567
This theorem is referenced by:  fimassd  6758  fimarab  6983  f1imaen2g  9054  domunsncan  9111  fissuni  9395  fipreima  9396  carduniima  10134  psgnunilem1  19526  fbasrn  23908  imaelfm  23975  wlkres  29703  trlreslem  29732  tocyccntz  33147  rhmimaidl  33440  nummin  35084  hashscontpowcl  42102  limsupvaluz  45664  fundcmpsurbijinjpreimafv  47332  fundcmpsurinjimaid  47336
  Copyright terms: Public domain W3C validator