| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fimass | Structured version Visualization version GIF version | ||
| Description: The image of a class under a function with domain and codomain is a subset of its codomain. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| fimass | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 “ 𝑋) ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 6058 | . 2 ⊢ (𝐹 “ 𝑋) ⊆ ran 𝐹 | |
| 2 | frn 6713 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 3 | 1, 2 | sstrid 3970 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 “ 𝑋) ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3926 ran crn 5655 “ cima 5657 ⟶wf 6527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-f 6535 |
| This theorem is referenced by: fimassd 6727 fimarab 6953 f1imaen2g 9029 domunsncan 9086 fissuni 9369 fipreima 9370 carduniima 10110 psgnunilem1 19474 fbasrn 23822 imaelfm 23889 wlkres 29650 trlreslem 29679 tocyccntz 33155 rhmimaidl 33447 nummin 35122 hashscontpowcl 42133 relpfrlem 44978 limsupvaluz 45737 fundcmpsurbijinjpreimafv 47421 fundcmpsurinjimaid 47425 |
| Copyright terms: Public domain | W3C validator |