| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fimass | Structured version Visualization version GIF version | ||
| Description: The image of a class under a function with domain and codomain is a subset of its codomain. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| fimass | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 “ 𝑋) ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 6022 | . 2 ⊢ (𝐹 “ 𝑋) ⊆ ran 𝐹 | |
| 2 | frn 6659 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 3 | 1, 2 | sstrid 3947 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 “ 𝑋) ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3903 ran crn 5620 “ cima 5622 ⟶wf 6478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-f 6486 |
| This theorem is referenced by: fimassd 6673 fimarab 6897 f1imaen2g 8940 domunsncan 8994 fissuni 9247 fipreima 9248 carduniima 9990 psgnunilem1 19372 fbasrn 23769 imaelfm 23836 wlkres 29614 trlreslem 29643 tocyccntz 33087 rhmimaidl 33370 nummin 35064 hashscontpowcl 42103 relpfrlem 44937 limsupvaluz 45699 fundcmpsurbijinjpreimafv 47401 fundcmpsurinjimaid 47405 |
| Copyright terms: Public domain | W3C validator |