MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimass Structured version   Visualization version   GIF version

Theorem fimass 6605
Description: The image of a class under a function with domain and codomain is a subset of its codomain. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
fimass (𝐹:𝐴𝐵 → (𝐹𝑋) ⊆ 𝐵)

Proof of Theorem fimass
StepHypRef Expression
1 imassrn 5969 . 2 (𝐹𝑋) ⊆ ran 𝐹
2 frn 6591 . 2 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
31, 2sstrid 3928 1 (𝐹:𝐴𝐵 → (𝐹𝑋) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3883  ran crn 5581  cima 5583  wf 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-f 6422
This theorem is referenced by:  fimacnvOLD  6930  f1imaen2g  8756  domunsncan  8812  fissuni  9054  fipreima  9055  carduniima  9783  psgnunilem1  19016  fbasrn  22943  imaelfm  23010  wlkres  27940  trlreslem  27969  fimarab  30881  tocyccntz  31313  rhmimaidl  31511  nummin  32963  fimassd  42660  limsupvaluz  43139  sge0f1o  43810  fundcmpsurbijinjpreimafv  44747  fundcmpsurinjimaid  44751
  Copyright terms: Public domain W3C validator