| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fimass | Structured version Visualization version GIF version | ||
| Description: The image of a class under a function with domain and codomain is a subset of its codomain. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| fimass | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 “ 𝑋) ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 6042 | . 2 ⊢ (𝐹 “ 𝑋) ⊆ ran 𝐹 | |
| 2 | frn 6695 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 3 | 1, 2 | sstrid 3958 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 “ 𝑋) ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3914 ran crn 5639 “ cima 5641 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-f 6515 |
| This theorem is referenced by: fimassd 6709 fimarab 6935 f1imaen2g 8986 domunsncan 9041 fissuni 9308 fipreima 9309 carduniima 10049 psgnunilem1 19423 fbasrn 23771 imaelfm 23838 wlkres 29598 trlreslem 29627 tocyccntz 33101 rhmimaidl 33403 nummin 35081 hashscontpowcl 42108 relpfrlem 44943 limsupvaluz 45706 fundcmpsurbijinjpreimafv 47408 fundcmpsurinjimaid 47412 |
| Copyright terms: Public domain | W3C validator |