![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fimass | Structured version Visualization version GIF version |
Description: The image of a class under a function with domain and codomain is a subset of its codomain. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
fimass | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 “ 𝑋) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 6100 | . 2 ⊢ (𝐹 “ 𝑋) ⊆ ran 𝐹 | |
2 | frn 6754 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
3 | 1, 2 | sstrid 4020 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 “ 𝑋) ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3976 ran crn 5701 “ cima 5703 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-f 6577 |
This theorem is referenced by: fimassd 6768 fimarab 6996 fimacnvOLD 7104 f1imaen2g 9075 domunsncan 9138 fissuni 9427 fipreima 9428 carduniima 10165 psgnunilem1 19535 fbasrn 23913 imaelfm 23980 wlkres 29706 trlreslem 29735 tocyccntz 33137 rhmimaidl 33425 nummin 35067 hashscontpowcl 42077 limsupvaluz 45629 sge0f1o 46303 fundcmpsurbijinjpreimafv 47281 fundcmpsurinjimaid 47285 |
Copyright terms: Public domain | W3C validator |