Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fimass | Structured version Visualization version GIF version |
Description: The image of a class under a function with domain and codomain is a subset of its codomain. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
fimass | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 “ 𝑋) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 5969 | . 2 ⊢ (𝐹 “ 𝑋) ⊆ ran 𝐹 | |
2 | frn 6591 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
3 | 1, 2 | sstrid 3928 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 “ 𝑋) ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3883 ran crn 5581 “ cima 5583 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-f 6422 |
This theorem is referenced by: fimacnvOLD 6930 f1imaen2g 8756 domunsncan 8812 fissuni 9054 fipreima 9055 carduniima 9783 psgnunilem1 19016 fbasrn 22943 imaelfm 23010 wlkres 27940 trlreslem 27969 fimarab 30881 tocyccntz 31313 rhmimaidl 31511 nummin 32963 fimassd 42660 limsupvaluz 43139 sge0f1o 43810 fundcmpsurbijinjpreimafv 44747 fundcmpsurinjimaid 44751 |
Copyright terms: Public domain | W3C validator |