Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fimass | Structured version Visualization version GIF version |
Description: The image of a class under a function with domain and codomain is a subset of its codomain. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
fimass | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 “ 𝑋) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 5979 | . 2 ⊢ (𝐹 “ 𝑋) ⊆ ran 𝐹 | |
2 | frn 6605 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
3 | 1, 2 | sstrid 3937 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 “ 𝑋) ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3892 ran crn 5591 “ cima 5593 ⟶wf 6428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-xp 5596 df-cnv 5598 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-f 6436 |
This theorem is referenced by: fimacnvOLD 6945 f1imaen2g 8784 domunsncan 8841 fissuni 9102 fipreima 9103 carduniima 9853 psgnunilem1 19099 fbasrn 23033 imaelfm 23100 wlkres 28035 trlreslem 28064 fimarab 30976 tocyccntz 31407 rhmimaidl 31605 nummin 33059 fimassd 42741 limsupvaluz 43220 sge0f1o 43891 fundcmpsurbijinjpreimafv 44828 fundcmpsurinjimaid 44832 |
Copyright terms: Public domain | W3C validator |