MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimass Structured version   Visualization version   GIF version

Theorem fimass 6621
Description: The image of a class under a function with domain and codomain is a subset of its codomain. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
fimass (𝐹:𝐴𝐵 → (𝐹𝑋) ⊆ 𝐵)

Proof of Theorem fimass
StepHypRef Expression
1 imassrn 5980 . 2 (𝐹𝑋) ⊆ ran 𝐹
2 frn 6607 . 2 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
31, 2sstrid 3932 1 (𝐹:𝐴𝐵 → (𝐹𝑋) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3887  ran crn 5590  cima 5592  wf 6429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-f 6437
This theorem is referenced by:  fimacnvOLD  6948  f1imaen2g  8801  domunsncan  8859  fissuni  9124  fipreima  9125  carduniima  9852  psgnunilem1  19101  fbasrn  23035  imaelfm  23102  wlkres  28038  trlreslem  28067  fimarab  30980  tocyccntz  31411  rhmimaidl  31609  nummin  33063  fimassd  42771  limsupvaluz  43249  sge0f1o  43920  fundcmpsurbijinjpreimafv  44859  fundcmpsurinjimaid  44863
  Copyright terms: Public domain W3C validator