MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimass Structured version   Visualization version   GIF version

Theorem fimass 6672
Description: The image of a class under a function with domain and codomain is a subset of its codomain. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
fimass (𝐹:𝐴𝐵 → (𝐹𝑋) ⊆ 𝐵)

Proof of Theorem fimass
StepHypRef Expression
1 imassrn 6022 . 2 (𝐹𝑋) ⊆ ran 𝐹
2 frn 6659 . 2 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
31, 2sstrid 3947 1 (𝐹:𝐴𝐵 → (𝐹𝑋) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3903  ran crn 5620  cima 5622  wf 6478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-f 6486
This theorem is referenced by:  fimassd  6673  fimarab  6897  f1imaen2g  8940  domunsncan  8994  fissuni  9247  fipreima  9248  carduniima  9990  psgnunilem1  19372  fbasrn  23769  imaelfm  23836  wlkres  29614  trlreslem  29643  tocyccntz  33087  rhmimaidl  33370  nummin  35064  hashscontpowcl  42103  relpfrlem  44937  limsupvaluz  45699  fundcmpsurbijinjpreimafv  47401  fundcmpsurinjimaid  47405
  Copyright terms: Public domain W3C validator