MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimass Structured version   Visualization version   GIF version

Theorem fimass 6708
Description: The image of a class under a function with domain and codomain is a subset of its codomain. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
fimass (𝐹:𝐴𝐵 → (𝐹𝑋) ⊆ 𝐵)

Proof of Theorem fimass
StepHypRef Expression
1 imassrn 6042 . 2 (𝐹𝑋) ⊆ ran 𝐹
2 frn 6695 . 2 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
31, 2sstrid 3958 1 (𝐹:𝐴𝐵 → (𝐹𝑋) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3914  ran crn 5639  cima 5641  wf 6507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-f 6515
This theorem is referenced by:  fimassd  6709  fimarab  6935  f1imaen2g  8986  domunsncan  9041  fissuni  9308  fipreima  9309  carduniima  10049  psgnunilem1  19423  fbasrn  23771  imaelfm  23838  wlkres  29598  trlreslem  29627  tocyccntz  33101  rhmimaidl  33403  nummin  35081  hashscontpowcl  42108  relpfrlem  44943  limsupvaluz  45706  fundcmpsurbijinjpreimafv  47408  fundcmpsurinjimaid  47412
  Copyright terms: Public domain W3C validator