MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimass Structured version   Visualization version   GIF version

Theorem fimass 6767
Description: The image of a class under a function with domain and codomain is a subset of its codomain. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
fimass (𝐹:𝐴𝐵 → (𝐹𝑋) ⊆ 𝐵)

Proof of Theorem fimass
StepHypRef Expression
1 imassrn 6100 . 2 (𝐹𝑋) ⊆ ran 𝐹
2 frn 6754 . 2 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
31, 2sstrid 4020 1 (𝐹:𝐴𝐵 → (𝐹𝑋) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3976  ran crn 5701  cima 5703  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-f 6577
This theorem is referenced by:  fimassd  6768  fimarab  6996  fimacnvOLD  7104  f1imaen2g  9075  domunsncan  9138  fissuni  9427  fipreima  9428  carduniima  10165  psgnunilem1  19535  fbasrn  23913  imaelfm  23980  wlkres  29706  trlreslem  29735  tocyccntz  33137  rhmimaidl  33425  nummin  35067  hashscontpowcl  42077  limsupvaluz  45629  sge0f1o  46303  fundcmpsurbijinjpreimafv  47281  fundcmpsurinjimaid  47285
  Copyright terms: Public domain W3C validator