MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimass Structured version   Visualization version   GIF version

Theorem fimass 6739
Description: The image of a class under a function with domain and codomain is a subset of its codomain. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
fimass (𝐹:𝐴𝐵 → (𝐹𝑋) ⊆ 𝐵)

Proof of Theorem fimass
StepHypRef Expression
1 imassrn 6071 . 2 (𝐹𝑋) ⊆ ran 𝐹
2 frn 6725 . 2 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
31, 2sstrid 3994 1 (𝐹:𝐴𝐵 → (𝐹𝑋) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3949  ran crn 5678  cima 5680  wf 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-f 6548
This theorem is referenced by:  fimacnvOLD  7073  f1imaen2g  9011  domunsncan  9072  fissuni  9357  fipreima  9358  carduniima  10091  psgnunilem1  19361  fbasrn  23388  imaelfm  23455  wlkres  28927  trlreslem  28956  fimarab  31868  tocyccntz  32303  rhmimaidl  32550  nummin  34094  fimassd  43930  limsupvaluz  44424  sge0f1o  45098  fundcmpsurbijinjpreimafv  46075  fundcmpsurinjimaid  46079
  Copyright terms: Public domain W3C validator