MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimass Structured version   Visualization version   GIF version

Theorem fimass 6756
Description: The image of a class under a function with domain and codomain is a subset of its codomain. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
fimass (𝐹:𝐴𝐵 → (𝐹𝑋) ⊆ 𝐵)

Proof of Theorem fimass
StepHypRef Expression
1 imassrn 6089 . 2 (𝐹𝑋) ⊆ ran 𝐹
2 frn 6743 . 2 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
31, 2sstrid 3995 1 (𝐹:𝐴𝐵 → (𝐹𝑋) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3951  ran crn 5686  cima 5688  wf 6557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-cnv 5693  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-f 6565
This theorem is referenced by:  fimassd  6757  fimarab  6983  f1imaen2g  9055  domunsncan  9112  fissuni  9397  fipreima  9398  carduniima  10136  psgnunilem1  19511  fbasrn  23892  imaelfm  23959  wlkres  29688  trlreslem  29717  tocyccntz  33164  rhmimaidl  33460  nummin  35105  hashscontpowcl  42121  relpfrlem  44974  limsupvaluz  45723  fundcmpsurbijinjpreimafv  47394  fundcmpsurinjimaid  47398
  Copyright terms: Public domain W3C validator