Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fimass | Structured version Visualization version GIF version |
Description: The image of a class under a function with domain and codomain is a subset of its codomain. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
fimass | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 “ 𝑋) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 5980 | . 2 ⊢ (𝐹 “ 𝑋) ⊆ ran 𝐹 | |
2 | frn 6607 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
3 | 1, 2 | sstrid 3932 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 “ 𝑋) ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3887 ran crn 5590 “ cima 5592 ⟶wf 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-f 6437 |
This theorem is referenced by: fimacnvOLD 6948 f1imaen2g 8801 domunsncan 8859 fissuni 9124 fipreima 9125 carduniima 9852 psgnunilem1 19101 fbasrn 23035 imaelfm 23102 wlkres 28038 trlreslem 28067 fimarab 30980 tocyccntz 31411 rhmimaidl 31609 nummin 33063 fimassd 42771 limsupvaluz 43249 sge0f1o 43920 fundcmpsurbijinjpreimafv 44859 fundcmpsurinjimaid 44863 |
Copyright terms: Public domain | W3C validator |