MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimass Structured version   Visualization version   GIF version

Theorem fimass 6711
Description: The image of a class under a function with domain and codomain is a subset of its codomain. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
fimass (𝐹:𝐴𝐵 → (𝐹𝑋) ⊆ 𝐵)

Proof of Theorem fimass
StepHypRef Expression
1 imassrn 6045 . 2 (𝐹𝑋) ⊆ ran 𝐹
2 frn 6698 . 2 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
31, 2sstrid 3961 1 (𝐹:𝐴𝐵 → (𝐹𝑋) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3917  ran crn 5642  cima 5644  wf 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-f 6518
This theorem is referenced by:  fimassd  6712  fimarab  6938  f1imaen2g  8989  domunsncan  9046  fissuni  9315  fipreima  9316  carduniima  10056  psgnunilem1  19430  fbasrn  23778  imaelfm  23845  wlkres  29605  trlreslem  29634  tocyccntz  33108  rhmimaidl  33410  nummin  35088  hashscontpowcl  42115  relpfrlem  44950  limsupvaluz  45713  fundcmpsurbijinjpreimafv  47412  fundcmpsurinjimaid  47416
  Copyright terms: Public domain W3C validator