Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axccd2 Structured version   Visualization version   GIF version

Theorem axccd2 45254
Description: An alternative version of the axiom of countable choice. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
axccd2.1 (𝜑𝐴 ≼ ω)
axccd2.2 ((𝜑𝑥𝐴) → 𝑥 ≠ ∅)
Assertion
Ref Expression
axccd2 (𝜑 → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝑥)
Distinct variable groups:   𝐴,𝑓,𝑥   𝜑,𝑓,𝑥

Proof of Theorem axccd2
StepHypRef Expression
1 isfinite2 9306 . . . . 5 (𝐴 ≺ ω → 𝐴 ∈ Fin)
21adantl 481 . . . 4 ((𝜑𝐴 ≺ ω) → 𝐴 ∈ Fin)
3 simpr 484 . . . 4 (((𝜑𝐴 ≺ ω) ∧ 𝑥𝐴) → 𝑥𝐴)
4 axccd2.2 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ≠ ∅)
54adantlr 715 . . . 4 (((𝜑𝐴 ≺ ω) ∧ 𝑥𝐴) → 𝑥 ≠ ∅)
62, 3, 5choicefi 45224 . . 3 ((𝜑𝐴 ≺ ω) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
7 simpr 484 . . . . 5 ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥) → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥)
87a1i 11 . . . 4 ((𝜑𝐴 ≺ ω) → ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥) → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
98eximdv 1917 . . 3 ((𝜑𝐴 ≺ ω) → (∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥) → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
106, 9mpd 15 . 2 ((𝜑𝐴 ≺ ω) → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝑥)
11 axccd2.1 . . . . 5 (𝜑𝐴 ≼ ω)
1211anim1i 615 . . . 4 ((𝜑 ∧ ¬ 𝐴 ≺ ω) → (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω))
13 bren2 8997 . . . 4 (𝐴 ≈ ω ↔ (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω))
1412, 13sylibr 234 . . 3 ((𝜑 ∧ ¬ 𝐴 ≺ ω) → 𝐴 ≈ ω)
15 simpr 484 . . . 4 ((𝜑𝐴 ≈ ω) → 𝐴 ≈ ω)
164adantlr 715 . . . 4 (((𝜑𝐴 ≈ ω) ∧ 𝑥𝐴) → 𝑥 ≠ ∅)
1715, 16axccd 45253 . . 3 ((𝜑𝐴 ≈ ω) → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝑥)
1814, 17syldan 591 . 2 ((𝜑 ∧ ¬ 𝐴 ≺ ω) → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝑥)
1910, 18pm2.61dan 812 1 (𝜑 → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wex 1779  wcel 2108  wne 2932  wral 3051  c0 4308   class class class wbr 5119   Fn wfn 6526  cfv 6531  ωcom 7861  cen 8956  cdom 8957  csdm 8958  Fincfn 8959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cc 10449
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963
This theorem is referenced by:  smflimlem6  46805  smfpimcc  46837
  Copyright terms: Public domain W3C validator