![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > axccd2 | Structured version Visualization version GIF version |
Description: An alternative version of the axiom of countable choice. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
axccd2.1 | ⊢ (𝜑 → 𝐴 ≼ ω) |
axccd2.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) |
Ref | Expression |
---|---|
axccd2 | ⊢ (𝜑 → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfinite2 9362 | . . . . 5 ⊢ (𝐴 ≺ ω → 𝐴 ∈ Fin) | |
2 | 1 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≺ ω) → 𝐴 ∈ Fin) |
3 | simpr 484 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≺ ω) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
4 | axccd2.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) | |
5 | 4 | adantlr 714 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≺ ω) ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) |
6 | 2, 3, 5 | choicefi 45107 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≺ ω) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
7 | simpr 484 | . . . . 5 ⊢ ((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) → ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) | |
8 | 7 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≺ ω) → ((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) → ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
9 | 8 | eximdv 1916 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≺ ω) → (∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
10 | 6, 9 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≺ ω) → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) |
11 | axccd2.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ≼ ω) | |
12 | 11 | anim1i 614 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 ≺ ω) → (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω)) |
13 | bren2 9043 | . . . 4 ⊢ (𝐴 ≈ ω ↔ (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω)) | |
14 | 12, 13 | sylibr 234 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 ≺ ω) → 𝐴 ≈ ω) |
15 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≈ ω) → 𝐴 ≈ ω) | |
16 | 4 | adantlr 714 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≈ ω) ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) |
17 | 15, 16 | axccd 45136 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≈ ω) → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) |
18 | 14, 17 | syldan 590 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 ≺ ω) → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) |
19 | 10, 18 | pm2.61dan 812 | 1 ⊢ (𝜑 → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∅c0 4352 class class class wbr 5166 Fn wfn 6568 ‘cfv 6573 ωcom 7903 ≈ cen 9000 ≼ cdom 9001 ≺ csdm 9002 Fincfn 9003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cc 10504 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 |
This theorem is referenced by: smflimlem6 46697 smfpimcc 46729 |
Copyright terms: Public domain | W3C validator |