Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > axccd2 | Structured version Visualization version GIF version |
Description: An alternative version of the axiom of countable choice. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
axccd2.1 | ⊢ (𝜑 → 𝐴 ≼ ω) |
axccd2.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) |
Ref | Expression |
---|---|
axccd2 | ⊢ (𝜑 → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfinite2 8929 | . . . . 5 ⊢ (𝐴 ≺ ω → 𝐴 ∈ Fin) | |
2 | 1 | adantl 485 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≺ ω) → 𝐴 ∈ Fin) |
3 | simpr 488 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≺ ω) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
4 | axccd2.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) | |
5 | 4 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≺ ω) ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) |
6 | 2, 3, 5 | choicefi 42413 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≺ ω) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
7 | simpr 488 | . . . . 5 ⊢ ((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) → ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) | |
8 | 7 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≺ ω) → ((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) → ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
9 | 8 | eximdv 1925 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≺ ω) → (∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
10 | 6, 9 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≺ ω) → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) |
11 | axccd2.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ≼ ω) | |
12 | 11 | anim1i 618 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 ≺ ω) → (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω)) |
13 | bren2 8659 | . . . 4 ⊢ (𝐴 ≈ ω ↔ (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω)) | |
14 | 12, 13 | sylibr 237 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 ≺ ω) → 𝐴 ≈ ω) |
15 | simpr 488 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≈ ω) → 𝐴 ≈ ω) | |
16 | 4 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≈ ω) ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) |
17 | 15, 16 | axccd 42441 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≈ ω) → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) |
18 | 14, 17 | syldan 594 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 ≺ ω) → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) |
19 | 10, 18 | pm2.61dan 813 | 1 ⊢ (𝜑 → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∃wex 1787 ∈ wcel 2110 ≠ wne 2940 ∀wral 3061 ∅c0 4237 class class class wbr 5053 Fn wfn 6375 ‘cfv 6380 ωcom 7644 ≈ cen 8623 ≼ cdom 8624 ≺ csdm 8625 Fincfn 8626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cc 10049 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 |
This theorem is referenced by: smflimlem6 43983 smfpimcc 44013 |
Copyright terms: Public domain | W3C validator |