| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axccd2 | Structured version Visualization version GIF version | ||
| Description: An alternative version of the axiom of countable choice. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| axccd2.1 | ⊢ (𝜑 → 𝐴 ≼ ω) |
| axccd2.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) |
| Ref | Expression |
|---|---|
| axccd2 | ⊢ (𝜑 → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfinite2 9192 | . . . . 5 ⊢ (𝐴 ≺ ω → 𝐴 ∈ Fin) | |
| 2 | 1 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≺ ω) → 𝐴 ∈ Fin) |
| 3 | simpr 484 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≺ ω) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 4 | axccd2.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) | |
| 5 | 4 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≺ ω) ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) |
| 6 | 2, 3, 5 | choicefi 45311 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≺ ω) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
| 7 | simpr 484 | . . . . 5 ⊢ ((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) → ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) | |
| 8 | 7 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≺ ω) → ((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) → ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
| 9 | 8 | eximdv 1918 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≺ ω) → (∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
| 10 | 6, 9 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≺ ω) → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) |
| 11 | axccd2.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ≼ ω) | |
| 12 | 11 | anim1i 615 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 ≺ ω) → (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω)) |
| 13 | bren2 8915 | . . . 4 ⊢ (𝐴 ≈ ω ↔ (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω)) | |
| 14 | 12, 13 | sylibr 234 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 ≺ ω) → 𝐴 ≈ ω) |
| 15 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≈ ω) → 𝐴 ≈ ω) | |
| 16 | 4 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≈ ω) ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) |
| 17 | 15, 16 | axccd 45340 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≈ ω) → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) |
| 18 | 14, 17 | syldan 591 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 ≺ ω) → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) |
| 19 | 10, 18 | pm2.61dan 812 | 1 ⊢ (𝜑 → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2113 ≠ wne 2930 ∀wral 3049 ∅c0 4284 class class class wbr 5095 Fn wfn 6484 ‘cfv 6489 ωcom 7805 ≈ cen 8875 ≼ cdom 8876 ≺ csdm 8877 Fincfn 8878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cc 10336 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 |
| This theorem is referenced by: smflimlem6 46888 smfpimcc 46920 |
| Copyright terms: Public domain | W3C validator |