| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axccd2 | Structured version Visualization version GIF version | ||
| Description: An alternative version of the axiom of countable choice. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| axccd2.1 | ⊢ (𝜑 → 𝐴 ≼ ω) |
| axccd2.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) |
| Ref | Expression |
|---|---|
| axccd2 | ⊢ (𝜑 → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfinite2 9245 | . . . . 5 ⊢ (𝐴 ≺ ω → 𝐴 ∈ Fin) | |
| 2 | 1 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≺ ω) → 𝐴 ∈ Fin) |
| 3 | simpr 484 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≺ ω) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 4 | axccd2.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) | |
| 5 | 4 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≺ ω) ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) |
| 6 | 2, 3, 5 | choicefi 45194 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≺ ω) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
| 7 | simpr 484 | . . . . 5 ⊢ ((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) → ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) | |
| 8 | 7 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≺ ω) → ((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) → ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
| 9 | 8 | eximdv 1917 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≺ ω) → (∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
| 10 | 6, 9 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≺ ω) → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) |
| 11 | axccd2.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ≼ ω) | |
| 12 | 11 | anim1i 615 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 ≺ ω) → (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω)) |
| 13 | bren2 8954 | . . . 4 ⊢ (𝐴 ≈ ω ↔ (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω)) | |
| 14 | 12, 13 | sylibr 234 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 ≺ ω) → 𝐴 ≈ ω) |
| 15 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≈ ω) → 𝐴 ≈ ω) | |
| 16 | 4 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≈ ω) ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) |
| 17 | 15, 16 | axccd 45223 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≈ ω) → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) |
| 18 | 14, 17 | syldan 591 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 ≺ ω) → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) |
| 19 | 10, 18 | pm2.61dan 812 | 1 ⊢ (𝜑 → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∅c0 4296 class class class wbr 5107 Fn wfn 6506 ‘cfv 6511 ωcom 7842 ≈ cen 8915 ≼ cdom 8916 ≺ csdm 8917 Fincfn 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cc 10388 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 |
| This theorem is referenced by: smflimlem6 46774 smfpimcc 46806 |
| Copyright terms: Public domain | W3C validator |