Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axccd2 Structured version   Visualization version   GIF version

Theorem axccd2 44227
Description: An alternative version of the axiom of countable choice. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
axccd2.1 (𝜑𝐴 ≼ ω)
axccd2.2 ((𝜑𝑥𝐴) → 𝑥 ≠ ∅)
Assertion
Ref Expression
axccd2 (𝜑 → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝑥)
Distinct variable groups:   𝐴,𝑓,𝑥   𝜑,𝑓,𝑥

Proof of Theorem axccd2
StepHypRef Expression
1 isfinite2 9303 . . . . 5 (𝐴 ≺ ω → 𝐴 ∈ Fin)
21adantl 480 . . . 4 ((𝜑𝐴 ≺ ω) → 𝐴 ∈ Fin)
3 simpr 483 . . . 4 (((𝜑𝐴 ≺ ω) ∧ 𝑥𝐴) → 𝑥𝐴)
4 axccd2.2 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ≠ ∅)
54adantlr 711 . . . 4 (((𝜑𝐴 ≺ ω) ∧ 𝑥𝐴) → 𝑥 ≠ ∅)
62, 3, 5choicefi 44197 . . 3 ((𝜑𝐴 ≺ ω) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
7 simpr 483 . . . . 5 ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥) → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥)
87a1i 11 . . . 4 ((𝜑𝐴 ≺ ω) → ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥) → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
98eximdv 1918 . . 3 ((𝜑𝐴 ≺ ω) → (∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥) → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
106, 9mpd 15 . 2 ((𝜑𝐴 ≺ ω) → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝑥)
11 axccd2.1 . . . . 5 (𝜑𝐴 ≼ ω)
1211anim1i 613 . . . 4 ((𝜑 ∧ ¬ 𝐴 ≺ ω) → (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω))
13 bren2 8981 . . . 4 (𝐴 ≈ ω ↔ (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω))
1412, 13sylibr 233 . . 3 ((𝜑 ∧ ¬ 𝐴 ≺ ω) → 𝐴 ≈ ω)
15 simpr 483 . . . 4 ((𝜑𝐴 ≈ ω) → 𝐴 ≈ ω)
164adantlr 711 . . . 4 (((𝜑𝐴 ≈ ω) ∧ 𝑥𝐴) → 𝑥 ≠ ∅)
1715, 16axccd 44226 . . 3 ((𝜑𝐴 ≈ ω) → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝑥)
1814, 17syldan 589 . 2 ((𝜑 ∧ ¬ 𝐴 ≺ ω) → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝑥)
1910, 18pm2.61dan 809 1 (𝜑 → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wex 1779  wcel 2104  wne 2938  wral 3059  c0 4321   class class class wbr 5147   Fn wfn 6537  cfv 6542  ωcom 7857  cen 8938  cdom 8939  csdm 8940  Fincfn 8941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cc 10432
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945
This theorem is referenced by:  smflimlem6  45790  smfpimcc  45822
  Copyright terms: Public domain W3C validator