![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > liminfval5 | Structured version Visualization version GIF version |
Description: The inferior limit of an infinite sequence 𝐹 of extended real numbers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
limsupval5.1 | ⊢ Ⅎ𝑘𝜑 |
limsupval5.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
limsupval5.3 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
limsupval5.4 | ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) |
Ref | Expression |
---|---|
liminfval5 | ⊢ (𝜑 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupval5.3 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
2 | limsupval5.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | 1, 2 | fexd 7264 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
4 | eqid 2740 | . . . 4 ⊢ (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
5 | 4 | liminfval 45680 | . . 3 ⊢ (𝐹 ∈ V → (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
6 | 3, 5 | syl 17 | . 2 ⊢ (𝜑 → (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
7 | limsupval5.4 | . . . . . 6 ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) | |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < ))) |
9 | limsupval5.1 | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
10 | 1 | fimassd 6768 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 “ (𝑘[,)+∞)) ⊆ ℝ*) |
11 | dfss2 3994 | . . . . . . . . . 10 ⊢ ((𝐹 “ (𝑘[,)+∞)) ⊆ ℝ* ↔ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑘[,)+∞))) | |
12 | 10, 11 | sylib 218 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑘[,)+∞))) |
13 | 12 | eqcomd 2746 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 “ (𝑘[,)+∞)) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) |
14 | 13 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → (𝐹 “ (𝑘[,)+∞)) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) |
15 | 14 | infeq1d 9546 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
16 | 9, 15 | mpteq2da 5264 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
17 | 8, 16 | eqtr2d 2781 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = 𝐺) |
18 | 17 | rneqd 5963 | . . 3 ⊢ (𝜑 → ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran 𝐺) |
19 | 18 | supeq1d 9515 | . 2 ⊢ (𝜑 → sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = sup(ran 𝐺, ℝ*, < )) |
20 | 6, 19 | eqtrd 2780 | 1 ⊢ (𝜑 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 ↦ cmpt 5249 ran crn 5701 “ cima 5703 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 supcsup 9509 infcinf 9510 ℝcr 11183 +∞cpnf 11321 ℝ*cxr 11323 < clt 11324 [,)cico 13409 lim infclsi 45672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-liminf 45673 |
This theorem is referenced by: liminf10ex 45695 |
Copyright terms: Public domain | W3C validator |