| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > liminfval5 | Structured version Visualization version GIF version | ||
| Description: The inferior limit of an infinite sequence 𝐹 of extended real numbers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| limsupval5.1 | ⊢ Ⅎ𝑘𝜑 |
| limsupval5.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| limsupval5.3 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
| limsupval5.4 | ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) |
| Ref | Expression |
|---|---|
| liminfval5 | ⊢ (𝜑 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupval5.3 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
| 2 | limsupval5.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | 1, 2 | fexd 7183 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
| 4 | eqid 2729 | . . . 4 ⊢ (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
| 5 | 4 | liminfval 45730 | . . 3 ⊢ (𝐹 ∈ V → (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
| 6 | 3, 5 | syl 17 | . 2 ⊢ (𝜑 → (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
| 7 | limsupval5.4 | . . . . . 6 ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < ))) |
| 9 | limsupval5.1 | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
| 10 | 1 | fimassd 6691 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 “ (𝑘[,)+∞)) ⊆ ℝ*) |
| 11 | dfss2 3929 | . . . . . . . . . 10 ⊢ ((𝐹 “ (𝑘[,)+∞)) ⊆ ℝ* ↔ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑘[,)+∞))) | |
| 12 | 10, 11 | sylib 218 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑘[,)+∞))) |
| 13 | 12 | eqcomd 2735 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 “ (𝑘[,)+∞)) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) |
| 14 | 13 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → (𝐹 “ (𝑘[,)+∞)) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) |
| 15 | 14 | infeq1d 9405 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
| 16 | 9, 15 | mpteq2da 5194 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
| 17 | 8, 16 | eqtr2d 2765 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = 𝐺) |
| 18 | 17 | rneqd 5891 | . . 3 ⊢ (𝜑 → ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran 𝐺) |
| 19 | 18 | supeq1d 9373 | . 2 ⊢ (𝜑 → sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = sup(ran 𝐺, ℝ*, < )) |
| 20 | 6, 19 | eqtrd 2764 | 1 ⊢ (𝜑 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Vcvv 3444 ∩ cin 3910 ⊆ wss 3911 ↦ cmpt 5183 ran crn 5632 “ cima 5634 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 supcsup 9367 infcinf 9368 ℝcr 11043 +∞cpnf 11181 ℝ*cxr 11183 < clt 11184 [,)cico 13284 lim infclsi 45722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-liminf 45723 |
| This theorem is referenced by: liminf10ex 45745 |
| Copyright terms: Public domain | W3C validator |