![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > liminfval5 | Structured version Visualization version GIF version |
Description: The inferior limit of an infinite sequence πΉ of extended real numbers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
limsupval5.1 | β’ β²ππ |
limsupval5.2 | β’ (π β π΄ β π) |
limsupval5.3 | β’ (π β πΉ:π΄βΆβ*) |
limsupval5.4 | β’ πΊ = (π β β β¦ inf((πΉ β (π[,)+β)), β*, < )) |
Ref | Expression |
---|---|
liminfval5 | β’ (π β (lim infβπΉ) = sup(ran πΊ, β*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupval5.3 | . . . 4 β’ (π β πΉ:π΄βΆβ*) | |
2 | limsupval5.2 | . . . 4 β’ (π β π΄ β π) | |
3 | 1, 2 | fexd 7225 | . . 3 β’ (π β πΉ β V) |
4 | eqid 2732 | . . . 4 β’ (π β β β¦ inf(((πΉ β (π[,)+β)) β© β*), β*, < )) = (π β β β¦ inf(((πΉ β (π[,)+β)) β© β*), β*, < )) | |
5 | 4 | liminfval 44461 | . . 3 β’ (πΉ β V β (lim infβπΉ) = sup(ran (π β β β¦ inf(((πΉ β (π[,)+β)) β© β*), β*, < )), β*, < )) |
6 | 3, 5 | syl 17 | . 2 β’ (π β (lim infβπΉ) = sup(ran (π β β β¦ inf(((πΉ β (π[,)+β)) β© β*), β*, < )), β*, < )) |
7 | limsupval5.4 | . . . . . 6 β’ πΊ = (π β β β¦ inf((πΉ β (π[,)+β)), β*, < )) | |
8 | 7 | a1i 11 | . . . . 5 β’ (π β πΊ = (π β β β¦ inf((πΉ β (π[,)+β)), β*, < ))) |
9 | limsupval5.1 | . . . . . 6 β’ β²ππ | |
10 | 1 | fimassd 43915 | . . . . . . . . . 10 β’ (π β (πΉ β (π[,)+β)) β β*) |
11 | df-ss 3964 | . . . . . . . . . 10 β’ ((πΉ β (π[,)+β)) β β* β ((πΉ β (π[,)+β)) β© β*) = (πΉ β (π[,)+β))) | |
12 | 10, 11 | sylib 217 | . . . . . . . . 9 β’ (π β ((πΉ β (π[,)+β)) β© β*) = (πΉ β (π[,)+β))) |
13 | 12 | eqcomd 2738 | . . . . . . . 8 β’ (π β (πΉ β (π[,)+β)) = ((πΉ β (π[,)+β)) β© β*)) |
14 | 13 | adantr 481 | . . . . . . 7 β’ ((π β§ π β β) β (πΉ β (π[,)+β)) = ((πΉ β (π[,)+β)) β© β*)) |
15 | 14 | infeq1d 9468 | . . . . . 6 β’ ((π β§ π β β) β inf((πΉ β (π[,)+β)), β*, < ) = inf(((πΉ β (π[,)+β)) β© β*), β*, < )) |
16 | 9, 15 | mpteq2da 5245 | . . . . 5 β’ (π β (π β β β¦ inf((πΉ β (π[,)+β)), β*, < )) = (π β β β¦ inf(((πΉ β (π[,)+β)) β© β*), β*, < ))) |
17 | 8, 16 | eqtr2d 2773 | . . . 4 β’ (π β (π β β β¦ inf(((πΉ β (π[,)+β)) β© β*), β*, < )) = πΊ) |
18 | 17 | rneqd 5935 | . . 3 β’ (π β ran (π β β β¦ inf(((πΉ β (π[,)+β)) β© β*), β*, < )) = ran πΊ) |
19 | 18 | supeq1d 9437 | . 2 β’ (π β sup(ran (π β β β¦ inf(((πΉ β (π[,)+β)) β© β*), β*, < )), β*, < ) = sup(ran πΊ, β*, < )) |
20 | 6, 19 | eqtrd 2772 | 1 β’ (π β (lim infβπΉ) = sup(ran πΊ, β*, < )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β²wnf 1785 β wcel 2106 Vcvv 3474 β© cin 3946 β wss 3947 β¦ cmpt 5230 ran crn 5676 β cima 5678 βΆwf 6536 βcfv 6540 (class class class)co 7405 supcsup 9431 infcinf 9432 βcr 11105 +βcpnf 11241 β*cxr 11243 < clt 11244 [,)cico 13322 lim infclsi 44453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-pre-lttri 11180 ax-pre-lttrn 11181 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-liminf 44454 |
This theorem is referenced by: liminf10ex 44476 |
Copyright terms: Public domain | W3C validator |