Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfval5 Structured version   Visualization version   GIF version

Theorem liminfval5 42264
Description: The inferior limit of an infinite sequence 𝐹 of extended real numbers. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
limsupval5.1 𝑘𝜑
limsupval5.2 (𝜑𝐴𝑉)
limsupval5.3 (𝜑𝐹:𝐴⟶ℝ*)
limsupval5.4 𝐺 = (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < ))
Assertion
Ref Expression
liminfval5 (𝜑 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, < ))
Distinct variable group:   𝑘,𝐹
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐺(𝑘)   𝑉(𝑘)

Proof of Theorem liminfval5
StepHypRef Expression
1 limsupval5.3 . . . 4 (𝜑𝐹:𝐴⟶ℝ*)
2 limsupval5.2 . . . 4 (𝜑𝐴𝑉)
31, 2fexd 6973 . . 3 (𝜑𝐹 ∈ V)
4 eqid 2824 . . . 4 (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
54liminfval 42258 . . 3 (𝐹 ∈ V → (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
63, 5syl 17 . 2 (𝜑 → (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
7 limsupval5.4 . . . . . 6 𝐺 = (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < ))
87a1i 11 . . . . 5 (𝜑𝐺 = (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )))
9 limsupval5.1 . . . . . 6 𝑘𝜑
101fimassd 41720 . . . . . . . . . 10 (𝜑 → (𝐹 “ (𝑘[,)+∞)) ⊆ ℝ*)
11 df-ss 3935 . . . . . . . . . 10 ((𝐹 “ (𝑘[,)+∞)) ⊆ ℝ* ↔ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑘[,)+∞)))
1210, 11sylib 221 . . . . . . . . 9 (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑘[,)+∞)))
1312eqcomd 2830 . . . . . . . 8 (𝜑 → (𝐹 “ (𝑘[,)+∞)) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
1413adantr 484 . . . . . . 7 ((𝜑𝑘 ∈ ℝ) → (𝐹 “ (𝑘[,)+∞)) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
1514infeq1d 8927 . . . . . 6 ((𝜑𝑘 ∈ ℝ) → inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
169, 15mpteq2da 5143 . . . . 5 (𝜑 → (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
178, 16eqtr2d 2860 . . . 4 (𝜑 → (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = 𝐺)
1817rneqd 5791 . . 3 (𝜑 → ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran 𝐺)
1918supeq1d 8896 . 2 (𝜑 → sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = sup(ran 𝐺, ℝ*, < ))
206, 19eqtrd 2859 1 (𝜑 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wnf 1785  wcel 2115  Vcvv 3479  cin 3917  wss 3918  cmpt 5129  ran crn 5539  cima 5541  wf 6334  cfv 6338  (class class class)co 7140  supcsup 8890  infcinf 8891  cr 10523  +∞cpnf 10659  *cxr 10661   < clt 10662  [,)cico 12728  lim infclsi 42250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5173  ax-sep 5186  ax-nul 5193  ax-pow 5249  ax-pr 5313  ax-un 7446  ax-cnex 10580  ax-resscn 10581  ax-pre-lttri 10598  ax-pre-lttrn 10599
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4822  df-iun 4904  df-br 5050  df-opab 5112  df-mpt 5130  df-id 5443  df-po 5457  df-so 5458  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-res 5550  df-ima 5551  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-f1 6343  df-fo 6344  df-f1o 6345  df-fv 6346  df-er 8274  df-en 8495  df-dom 8496  df-sdom 8497  df-sup 8892  df-inf 8893  df-pnf 10664  df-mnf 10665  df-xr 10666  df-ltxr 10667  df-liminf 42251
This theorem is referenced by:  liminf10ex  42273
  Copyright terms: Public domain W3C validator