| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > feqresmptf | Structured version Visualization version GIF version | ||
| Description: Express a restricted function as a mapping. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| feqresmptf.1 | ⊢ Ⅎ𝑥𝐹 |
| feqresmptf.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| feqresmptf.3 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| feqresmptf | ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑥𝐶 | |
| 2 | feqresmptf.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | 2, 1 | nfres 5952 | . . 3 ⊢ Ⅎ𝑥(𝐹 ↾ 𝐶) |
| 4 | feqresmptf.2 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 5 | feqresmptf.3 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
| 6 | 4, 5 | fssresd 6727 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| 7 | 1, 3, 6 | feqmptdf 6931 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥))) |
| 8 | fvres 6877 | . . 3 ⊢ (𝑥 ∈ 𝐶 → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) | |
| 9 | 8 | mpteq2ia 5202 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥)) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) |
| 10 | 7, 9 | eqtrdi 2780 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Ⅎwnfc 2876 ⊆ wss 3914 ↦ cmpt 5188 ↾ cres 5640 ⟶wf 6507 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |