| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > feqresmptf | Structured version Visualization version GIF version | ||
| Description: Express a restricted function as a mapping. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| feqresmptf.1 | ⊢ Ⅎ𝑥𝐹 |
| feqresmptf.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| feqresmptf.3 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| feqresmptf | ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2898 | . . 3 ⊢ Ⅎ𝑥𝐶 | |
| 2 | feqresmptf.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | 2, 1 | nfres 5968 | . . 3 ⊢ Ⅎ𝑥(𝐹 ↾ 𝐶) |
| 4 | feqresmptf.2 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 5 | feqresmptf.3 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
| 6 | 4, 5 | fssresd 6745 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| 7 | 1, 3, 6 | feqmptdf 6949 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥))) |
| 8 | fvres 6895 | . . 3 ⊢ (𝑥 ∈ 𝐶 → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) | |
| 9 | 8 | mpteq2ia 5216 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥)) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) |
| 10 | 7, 9 | eqtrdi 2786 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Ⅎwnfc 2883 ⊆ wss 3926 ↦ cmpt 5201 ↾ cres 5656 ⟶wf 6527 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |