| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > feqresmptf | Structured version Visualization version GIF version | ||
| Description: Express a restricted function as a mapping. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| feqresmptf.1 | ⊢ Ⅎ𝑥𝐹 |
| feqresmptf.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| feqresmptf.3 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| feqresmptf | ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2892 | . . 3 ⊢ Ⅎ𝑥𝐶 | |
| 2 | feqresmptf.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | 2, 1 | nfres 5955 | . . 3 ⊢ Ⅎ𝑥(𝐹 ↾ 𝐶) |
| 4 | feqresmptf.2 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 5 | feqresmptf.3 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
| 6 | 4, 5 | fssresd 6730 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| 7 | 1, 3, 6 | feqmptdf 6934 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥))) |
| 8 | fvres 6880 | . . 3 ⊢ (𝑥 ∈ 𝐶 → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) | |
| 9 | 8 | mpteq2ia 5205 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥)) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) |
| 10 | 7, 9 | eqtrdi 2781 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Ⅎwnfc 2877 ⊆ wss 3917 ↦ cmpt 5191 ↾ cres 5643 ⟶wf 6510 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |