Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  feqresmptf Structured version   Visualization version   GIF version

Theorem feqresmptf 42661
Description: Express a restricted function as a mapping. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
feqresmptf.1 𝑥𝐹
feqresmptf.2 (𝜑𝐹:𝐴𝐵)
feqresmptf.3 (𝜑𝐶𝐴)
Assertion
Ref Expression
feqresmptf (𝜑 → (𝐹𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem feqresmptf
StepHypRef Expression
1 nfcv 2906 . . 3 𝑥𝐶
2 feqresmptf.1 . . . 4 𝑥𝐹
32, 1nfres 5882 . . 3 𝑥(𝐹𝐶)
4 feqresmptf.2 . . . 4 (𝜑𝐹:𝐴𝐵)
5 feqresmptf.3 . . . 4 (𝜑𝐶𝐴)
64, 5fssresd 6625 . . 3 (𝜑 → (𝐹𝐶):𝐶𝐵)
71, 3, 6feqmptdf 6821 . 2 (𝜑 → (𝐹𝐶) = (𝑥𝐶 ↦ ((𝐹𝐶)‘𝑥)))
8 fvres 6775 . . 3 (𝑥𝐶 → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
98mpteq2ia 5173 . 2 (𝑥𝐶 ↦ ((𝐹𝐶)‘𝑥)) = (𝑥𝐶 ↦ (𝐹𝑥))
107, 9eqtrdi 2795 1 (𝜑 → (𝐹𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wnfc 2886  wss 3883  cmpt 5153  cres 5582  wf 6414  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator