Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  feqresmptf Structured version   Visualization version   GIF version

Theorem feqresmptf 45212
Description: Express a restricted function as a mapping. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
feqresmptf.1 𝑥𝐹
feqresmptf.2 (𝜑𝐹:𝐴𝐵)
feqresmptf.3 (𝜑𝐶𝐴)
Assertion
Ref Expression
feqresmptf (𝜑 → (𝐹𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem feqresmptf
StepHypRef Expression
1 nfcv 2891 . . 3 𝑥𝐶
2 feqresmptf.1 . . . 4 𝑥𝐹
32, 1nfres 5936 . . 3 𝑥(𝐹𝐶)
4 feqresmptf.2 . . . 4 (𝜑𝐹:𝐴𝐵)
5 feqresmptf.3 . . . 4 (𝜑𝐶𝐴)
64, 5fssresd 6695 . . 3 (𝜑 → (𝐹𝐶):𝐶𝐵)
71, 3, 6feqmptdf 6897 . 2 (𝜑 → (𝐹𝐶) = (𝑥𝐶 ↦ ((𝐹𝐶)‘𝑥)))
8 fvres 6845 . . 3 (𝑥𝐶 → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
98mpteq2ia 5190 . 2 (𝑥𝐶 ↦ ((𝐹𝐶)‘𝑥)) = (𝑥𝐶 ↦ (𝐹𝑥))
107, 9eqtrdi 2780 1 (𝜑 → (𝐹𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wnfc 2876  wss 3905  cmpt 5176  cres 5625  wf 6482  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator