Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupval3 | Structured version Visualization version GIF version |
Description: The superior limit of an infinite sequence 𝐹 of extended real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsupval3.1 | ⊢ Ⅎ𝑘𝜑 |
limsupval3.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
limsupval3.3 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
limsupval3.4 | ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) |
Ref | Expression |
---|---|
limsupval3 | ⊢ (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupval3.3 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
2 | limsupval3.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | 1, 2 | fexd 7085 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
4 | eqid 2738 | . . . 4 ⊢ (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
5 | 4 | limsupval 15111 | . . 3 ⊢ (𝐹 ∈ V → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
6 | 3, 5 | syl 17 | . 2 ⊢ (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
7 | limsupval3.4 | . . . . . 6 ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) | |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ))) |
9 | limsupval3.1 | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
10 | 1 | fimassd 42660 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 “ (𝑘[,)+∞)) ⊆ ℝ*) |
11 | df-ss 3900 | . . . . . . . . . 10 ⊢ ((𝐹 “ (𝑘[,)+∞)) ⊆ ℝ* ↔ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑘[,)+∞))) | |
12 | 10, 11 | sylib 217 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑘[,)+∞))) |
13 | 12 | eqcomd 2744 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 “ (𝑘[,)+∞)) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) |
14 | 13 | supeq1d 9135 | . . . . . . 7 ⊢ (𝜑 → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
16 | 9, 15 | mpteq2da 5168 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
17 | 8, 16 | eqtr2d 2779 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = 𝐺) |
18 | 17 | rneqd 5836 | . . 3 ⊢ (𝜑 → ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran 𝐺) |
19 | 18 | infeq1d 9166 | . 2 ⊢ (𝜑 → inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = inf(ran 𝐺, ℝ*, < )) |
20 | 6, 19 | eqtrd 2778 | 1 ⊢ (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 ↦ cmpt 5153 ran crn 5581 “ cima 5583 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 supcsup 9129 infcinf 9130 ℝcr 10801 +∞cpnf 10937 ℝ*cxr 10939 < clt 10940 [,)cico 13010 lim supclsp 15107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-limsup 15108 |
This theorem is referenced by: limsupmnflem 43151 limsup10ex 43204 |
Copyright terms: Public domain | W3C validator |