![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupval3 | Structured version Visualization version GIF version |
Description: The superior limit of an infinite sequence πΉ of extended real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsupval3.1 | β’ β²ππ |
limsupval3.2 | β’ (π β π΄ β π) |
limsupval3.3 | β’ (π β πΉ:π΄βΆβ*) |
limsupval3.4 | β’ πΊ = (π β β β¦ sup((πΉ β (π[,)+β)), β*, < )) |
Ref | Expression |
---|---|
limsupval3 | β’ (π β (lim supβπΉ) = inf(ran πΊ, β*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupval3.3 | . . . 4 β’ (π β πΉ:π΄βΆβ*) | |
2 | limsupval3.2 | . . . 4 β’ (π β π΄ β π) | |
3 | 1, 2 | fexd 7232 | . . 3 β’ (π β πΉ β V) |
4 | eqid 2731 | . . . 4 β’ (π β β β¦ sup(((πΉ β (π[,)+β)) β© β*), β*, < )) = (π β β β¦ sup(((πΉ β (π[,)+β)) β© β*), β*, < )) | |
5 | 4 | limsupval 15423 | . . 3 β’ (πΉ β V β (lim supβπΉ) = inf(ran (π β β β¦ sup(((πΉ β (π[,)+β)) β© β*), β*, < )), β*, < )) |
6 | 3, 5 | syl 17 | . 2 β’ (π β (lim supβπΉ) = inf(ran (π β β β¦ sup(((πΉ β (π[,)+β)) β© β*), β*, < )), β*, < )) |
7 | limsupval3.4 | . . . . . 6 β’ πΊ = (π β β β¦ sup((πΉ β (π[,)+β)), β*, < )) | |
8 | 7 | a1i 11 | . . . . 5 β’ (π β πΊ = (π β β β¦ sup((πΉ β (π[,)+β)), β*, < ))) |
9 | limsupval3.1 | . . . . . 6 β’ β²ππ | |
10 | 1 | fimassd 44230 | . . . . . . . . . 10 β’ (π β (πΉ β (π[,)+β)) β β*) |
11 | df-ss 3966 | . . . . . . . . . 10 β’ ((πΉ β (π[,)+β)) β β* β ((πΉ β (π[,)+β)) β© β*) = (πΉ β (π[,)+β))) | |
12 | 10, 11 | sylib 217 | . . . . . . . . 9 β’ (π β ((πΉ β (π[,)+β)) β© β*) = (πΉ β (π[,)+β))) |
13 | 12 | eqcomd 2737 | . . . . . . . 8 β’ (π β (πΉ β (π[,)+β)) = ((πΉ β (π[,)+β)) β© β*)) |
14 | 13 | supeq1d 9444 | . . . . . . 7 β’ (π β sup((πΉ β (π[,)+β)), β*, < ) = sup(((πΉ β (π[,)+β)) β© β*), β*, < )) |
15 | 14 | adantr 480 | . . . . . 6 β’ ((π β§ π β β) β sup((πΉ β (π[,)+β)), β*, < ) = sup(((πΉ β (π[,)+β)) β© β*), β*, < )) |
16 | 9, 15 | mpteq2da 5247 | . . . . 5 β’ (π β (π β β β¦ sup((πΉ β (π[,)+β)), β*, < )) = (π β β β¦ sup(((πΉ β (π[,)+β)) β© β*), β*, < ))) |
17 | 8, 16 | eqtr2d 2772 | . . . 4 β’ (π β (π β β β¦ sup(((πΉ β (π[,)+β)) β© β*), β*, < )) = πΊ) |
18 | 17 | rneqd 5938 | . . 3 β’ (π β ran (π β β β¦ sup(((πΉ β (π[,)+β)) β© β*), β*, < )) = ran πΊ) |
19 | 18 | infeq1d 9475 | . 2 β’ (π β inf(ran (π β β β¦ sup(((πΉ β (π[,)+β)) β© β*), β*, < )), β*, < ) = inf(ran πΊ, β*, < )) |
20 | 6, 19 | eqtrd 2771 | 1 β’ (π β (lim supβπΉ) = inf(ran πΊ, β*, < )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β²wnf 1784 β wcel 2105 Vcvv 3473 β© cin 3948 β wss 3949 β¦ cmpt 5232 ran crn 5678 β cima 5680 βΆwf 6540 βcfv 6544 (class class class)co 7412 supcsup 9438 infcinf 9439 βcr 11112 +βcpnf 11250 β*cxr 11252 < clt 11253 [,)cico 13331 lim supclsp 15419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-pre-lttri 11187 ax-pre-lttrn 11188 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-sup 9440 df-inf 9441 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-limsup 15420 |
This theorem is referenced by: limsupmnflem 44736 limsup10ex 44789 |
Copyright terms: Public domain | W3C validator |