![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupval3 | Structured version Visualization version GIF version |
Description: The superior limit of an infinite sequence 𝐹 of extended real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsupval3.1 | ⊢ Ⅎ𝑘𝜑 |
limsupval3.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
limsupval3.3 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
limsupval3.4 | ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) |
Ref | Expression |
---|---|
limsupval3 | ⊢ (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupval3.3 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
2 | limsupval3.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | 1, 2 | fexd 40111 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
4 | eqid 2825 | . . . 4 ⊢ (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
5 | 4 | limsupval 14582 | . . 3 ⊢ (𝐹 ∈ V → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
6 | 3, 5 | syl 17 | . 2 ⊢ (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
7 | limsupval3.4 | . . . . . 6 ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) | |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ))) |
9 | limsupval3.1 | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
10 | 1 | fimassd 40234 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 “ (𝑘[,)+∞)) ⊆ ℝ*) |
11 | df-ss 3812 | . . . . . . . . . 10 ⊢ ((𝐹 “ (𝑘[,)+∞)) ⊆ ℝ* ↔ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑘[,)+∞))) | |
12 | 10, 11 | sylib 210 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑘[,)+∞))) |
13 | 12 | eqcomd 2831 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 “ (𝑘[,)+∞)) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) |
14 | 13 | supeq1d 8621 | . . . . . . 7 ⊢ (𝜑 → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
15 | 14 | adantr 474 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
16 | 9, 15 | mpteq2da 4966 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
17 | 8, 16 | eqtr2d 2862 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = 𝐺) |
18 | 17 | rneqd 5585 | . . 3 ⊢ (𝜑 → ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran 𝐺) |
19 | 18 | infeq1d 8652 | . 2 ⊢ (𝜑 → inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = inf(ran 𝐺, ℝ*, < )) |
20 | 6, 19 | eqtrd 2861 | 1 ⊢ (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 Ⅎwnf 1884 ∈ wcel 2166 Vcvv 3414 ∩ cin 3797 ⊆ wss 3798 ↦ cmpt 4952 ran crn 5343 “ cima 5345 ⟶wf 6119 ‘cfv 6123 (class class class)co 6905 supcsup 8615 infcinf 8616 ℝcr 10251 +∞cpnf 10388 ℝ*cxr 10390 < clt 10391 [,)cico 12465 lim supclsp 14578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-pre-lttri 10326 ax-pre-lttrn 10327 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-po 5263 df-so 5264 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-er 8009 df-en 8223 df-dom 8224 df-sdom 8225 df-sup 8617 df-inf 8618 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-limsup 14579 |
This theorem is referenced by: limsupmnflem 40747 limsup10ex 40800 |
Copyright terms: Public domain | W3C validator |