| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupval3 | Structured version Visualization version GIF version | ||
| Description: The superior limit of an infinite sequence 𝐹 of extended real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| limsupval3.1 | ⊢ Ⅎ𝑘𝜑 |
| limsupval3.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| limsupval3.3 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
| limsupval3.4 | ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) |
| Ref | Expression |
|---|---|
| limsupval3 | ⊢ (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupval3.3 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
| 2 | limsupval3.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | 1, 2 | fexd 7204 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
| 4 | eqid 2730 | . . . 4 ⊢ (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
| 5 | 4 | limsupval 15447 | . . 3 ⊢ (𝐹 ∈ V → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
| 6 | 3, 5 | syl 17 | . 2 ⊢ (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
| 7 | limsupval3.4 | . . . . . 6 ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ))) |
| 9 | limsupval3.1 | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
| 10 | 1 | fimassd 6712 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 “ (𝑘[,)+∞)) ⊆ ℝ*) |
| 11 | dfss2 3935 | . . . . . . . . . 10 ⊢ ((𝐹 “ (𝑘[,)+∞)) ⊆ ℝ* ↔ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑘[,)+∞))) | |
| 12 | 10, 11 | sylib 218 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑘[,)+∞))) |
| 13 | 12 | eqcomd 2736 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 “ (𝑘[,)+∞)) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) |
| 14 | 13 | supeq1d 9404 | . . . . . . 7 ⊢ (𝜑 → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
| 16 | 9, 15 | mpteq2da 5202 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
| 17 | 8, 16 | eqtr2d 2766 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = 𝐺) |
| 18 | 17 | rneqd 5905 | . . 3 ⊢ (𝜑 → ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran 𝐺) |
| 19 | 18 | infeq1d 9436 | . 2 ⊢ (𝜑 → inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = inf(ran 𝐺, ℝ*, < )) |
| 20 | 6, 19 | eqtrd 2765 | 1 ⊢ (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Vcvv 3450 ∩ cin 3916 ⊆ wss 3917 ↦ cmpt 5191 ran crn 5642 “ cima 5644 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 supcsup 9398 infcinf 9399 ℝcr 11074 +∞cpnf 11212 ℝ*cxr 11214 < clt 11215 [,)cico 13315 lim supclsp 15443 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-limsup 15444 |
| This theorem is referenced by: limsupmnflem 45725 limsup10ex 45778 |
| Copyright terms: Public domain | W3C validator |