Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupval3 Structured version   Visualization version   GIF version

Theorem limsupval3 45673
Description: The superior limit of an infinite sequence 𝐹 of extended real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupval3.1 𝑘𝜑
limsupval3.2 (𝜑𝐴𝑉)
limsupval3.3 (𝜑𝐹:𝐴⟶ℝ*)
limsupval3.4 𝐺 = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ))
Assertion
Ref Expression
limsupval3 (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
Distinct variable group:   𝑘,𝐹
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐺(𝑘)   𝑉(𝑘)

Proof of Theorem limsupval3
StepHypRef Expression
1 limsupval3.3 . . . 4 (𝜑𝐹:𝐴⟶ℝ*)
2 limsupval3.2 . . . 4 (𝜑𝐴𝑉)
31, 2fexd 7163 . . 3 (𝜑𝐹 ∈ V)
4 eqid 2729 . . . 4 (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
54limsupval 15381 . . 3 (𝐹 ∈ V → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
63, 5syl 17 . 2 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
7 limsupval3.4 . . . . . 6 𝐺 = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ))
87a1i 11 . . . . 5 (𝜑𝐺 = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )))
9 limsupval3.1 . . . . . 6 𝑘𝜑
101fimassd 6673 . . . . . . . . . 10 (𝜑 → (𝐹 “ (𝑘[,)+∞)) ⊆ ℝ*)
11 dfss2 3921 . . . . . . . . . 10 ((𝐹 “ (𝑘[,)+∞)) ⊆ ℝ* ↔ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑘[,)+∞)))
1210, 11sylib 218 . . . . . . . . 9 (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑘[,)+∞)))
1312eqcomd 2735 . . . . . . . 8 (𝜑 → (𝐹 “ (𝑘[,)+∞)) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
1413supeq1d 9336 . . . . . . 7 (𝜑 → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
1514adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℝ) → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
169, 15mpteq2da 5184 . . . . 5 (𝜑 → (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
178, 16eqtr2d 2765 . . . 4 (𝜑 → (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = 𝐺)
1817rneqd 5880 . . 3 (𝜑 → ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran 𝐺)
1918infeq1d 9368 . 2 (𝜑 → inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = inf(ran 𝐺, ℝ*, < ))
206, 19eqtrd 2764 1 (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wnf 1783  wcel 2109  Vcvv 3436  cin 3902  wss 3903  cmpt 5173  ran crn 5620  cima 5622  wf 6478  cfv 6482  (class class class)co 7349  supcsup 9330  infcinf 9331  cr 11008  +∞cpnf 11146  *cxr 11148   < clt 11149  [,)cico 13250  lim supclsp 15377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-pre-lttri 11083  ax-pre-lttrn 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-limsup 15378
This theorem is referenced by:  limsupmnflem  45701  limsup10ex  45754
  Copyright terms: Public domain W3C validator