MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem7 Structured version   Visualization version   GIF version

Theorem fin23lem7 9732
Description: Lemma for isfin2-2 9735. The componentwise complement of a nonempty collection of sets is nonempty. (Contributed by Stefan O'Rear, 31-Oct-2014.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
fin23lem7 ((𝐴𝑉𝐵 ⊆ 𝒫 𝐴𝐵 ≠ ∅) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝐴𝑥) ∈ 𝐵} ≠ ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem fin23lem7
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 n0 4314 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝐵)
2 difss 4112 . . . . . . . 8 (𝐴𝑦) ⊆ 𝐴
3 elpw2g 5244 . . . . . . . . 9 (𝐴𝑉 → ((𝐴𝑦) ∈ 𝒫 𝐴 ↔ (𝐴𝑦) ⊆ 𝐴))
43ad2antrr 722 . . . . . . . 8 (((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) ∧ 𝑦𝐵) → ((𝐴𝑦) ∈ 𝒫 𝐴 ↔ (𝐴𝑦) ⊆ 𝐴))
52, 4mpbiri 259 . . . . . . 7 (((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) ∧ 𝑦𝐵) → (𝐴𝑦) ∈ 𝒫 𝐴)
6 simpr 485 . . . . . . . . . . 11 ((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) → 𝐵 ⊆ 𝒫 𝐴)
76sselda 3971 . . . . . . . . . 10 (((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) ∧ 𝑦𝐵) → 𝑦 ∈ 𝒫 𝐴)
87elpwid 4556 . . . . . . . . 9 (((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) ∧ 𝑦𝐵) → 𝑦𝐴)
9 dfss4 4239 . . . . . . . . 9 (𝑦𝐴 ↔ (𝐴 ∖ (𝐴𝑦)) = 𝑦)
108, 9sylib 219 . . . . . . . 8 (((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) ∧ 𝑦𝐵) → (𝐴 ∖ (𝐴𝑦)) = 𝑦)
11 simpr 485 . . . . . . . 8 (((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) ∧ 𝑦𝐵) → 𝑦𝐵)
1210, 11eqeltrd 2918 . . . . . . 7 (((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) ∧ 𝑦𝐵) → (𝐴 ∖ (𝐴𝑦)) ∈ 𝐵)
13 difeq2 4097 . . . . . . . . 9 (𝑥 = (𝐴𝑦) → (𝐴𝑥) = (𝐴 ∖ (𝐴𝑦)))
1413eleq1d 2902 . . . . . . . 8 (𝑥 = (𝐴𝑦) → ((𝐴𝑥) ∈ 𝐵 ↔ (𝐴 ∖ (𝐴𝑦)) ∈ 𝐵))
1514rspcev 3627 . . . . . . 7 (((𝐴𝑦) ∈ 𝒫 𝐴 ∧ (𝐴 ∖ (𝐴𝑦)) ∈ 𝐵) → ∃𝑥 ∈ 𝒫 𝐴(𝐴𝑥) ∈ 𝐵)
165, 12, 15syl2anc 584 . . . . . 6 (((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) ∧ 𝑦𝐵) → ∃𝑥 ∈ 𝒫 𝐴(𝐴𝑥) ∈ 𝐵)
1716ex 413 . . . . 5 ((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) → (𝑦𝐵 → ∃𝑥 ∈ 𝒫 𝐴(𝐴𝑥) ∈ 𝐵))
1817exlimdv 1927 . . . 4 ((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) → (∃𝑦 𝑦𝐵 → ∃𝑥 ∈ 𝒫 𝐴(𝐴𝑥) ∈ 𝐵))
191, 18syl5bi 243 . . 3 ((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) → (𝐵 ≠ ∅ → ∃𝑥 ∈ 𝒫 𝐴(𝐴𝑥) ∈ 𝐵))
20193impia 1111 . 2 ((𝐴𝑉𝐵 ⊆ 𝒫 𝐴𝐵 ≠ ∅) → ∃𝑥 ∈ 𝒫 𝐴(𝐴𝑥) ∈ 𝐵)
21 rabn0 4343 . 2 ({𝑥 ∈ 𝒫 𝐴 ∣ (𝐴𝑥) ∈ 𝐵} ≠ ∅ ↔ ∃𝑥 ∈ 𝒫 𝐴(𝐴𝑥) ∈ 𝐵)
2220, 21sylibr 235 1 ((𝐴𝑉𝐵 ⊆ 𝒫 𝐴𝐵 ≠ ∅) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝐴𝑥) ∈ 𝐵} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wex 1773  wcel 2107  wne 3021  wrex 3144  {crab 3147  cdif 3937  wss 3940  c0 4295  𝒫 cpw 4542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-dif 3943  df-in 3947  df-ss 3956  df-nul 4296  df-pw 4544
This theorem is referenced by:  fin2i2  9734  isfin2-2  9735
  Copyright terms: Public domain W3C validator