MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem7 Structured version   Visualization version   GIF version

Theorem fin23lem7 10003
Description: Lemma for isfin2-2 10006. The componentwise complement of a nonempty collection of sets is nonempty. (Contributed by Stefan O'Rear, 31-Oct-2014.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
fin23lem7 ((𝐴𝑉𝐵 ⊆ 𝒫 𝐴𝐵 ≠ ∅) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝐴𝑥) ∈ 𝐵} ≠ ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem fin23lem7
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 n0 4277 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝐵)
2 difss 4062 . . . . . . . 8 (𝐴𝑦) ⊆ 𝐴
3 elpw2g 5263 . . . . . . . . 9 (𝐴𝑉 → ((𝐴𝑦) ∈ 𝒫 𝐴 ↔ (𝐴𝑦) ⊆ 𝐴))
43ad2antrr 722 . . . . . . . 8 (((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) ∧ 𝑦𝐵) → ((𝐴𝑦) ∈ 𝒫 𝐴 ↔ (𝐴𝑦) ⊆ 𝐴))
52, 4mpbiri 257 . . . . . . 7 (((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) ∧ 𝑦𝐵) → (𝐴𝑦) ∈ 𝒫 𝐴)
6 simpr 484 . . . . . . . . . . 11 ((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) → 𝐵 ⊆ 𝒫 𝐴)
76sselda 3917 . . . . . . . . . 10 (((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) ∧ 𝑦𝐵) → 𝑦 ∈ 𝒫 𝐴)
87elpwid 4541 . . . . . . . . 9 (((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) ∧ 𝑦𝐵) → 𝑦𝐴)
9 dfss4 4189 . . . . . . . . 9 (𝑦𝐴 ↔ (𝐴 ∖ (𝐴𝑦)) = 𝑦)
108, 9sylib 217 . . . . . . . 8 (((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) ∧ 𝑦𝐵) → (𝐴 ∖ (𝐴𝑦)) = 𝑦)
11 simpr 484 . . . . . . . 8 (((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) ∧ 𝑦𝐵) → 𝑦𝐵)
1210, 11eqeltrd 2839 . . . . . . 7 (((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) ∧ 𝑦𝐵) → (𝐴 ∖ (𝐴𝑦)) ∈ 𝐵)
13 difeq2 4047 . . . . . . . . 9 (𝑥 = (𝐴𝑦) → (𝐴𝑥) = (𝐴 ∖ (𝐴𝑦)))
1413eleq1d 2823 . . . . . . . 8 (𝑥 = (𝐴𝑦) → ((𝐴𝑥) ∈ 𝐵 ↔ (𝐴 ∖ (𝐴𝑦)) ∈ 𝐵))
1514rspcev 3552 . . . . . . 7 (((𝐴𝑦) ∈ 𝒫 𝐴 ∧ (𝐴 ∖ (𝐴𝑦)) ∈ 𝐵) → ∃𝑥 ∈ 𝒫 𝐴(𝐴𝑥) ∈ 𝐵)
165, 12, 15syl2anc 583 . . . . . 6 (((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) ∧ 𝑦𝐵) → ∃𝑥 ∈ 𝒫 𝐴(𝐴𝑥) ∈ 𝐵)
1716ex 412 . . . . 5 ((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) → (𝑦𝐵 → ∃𝑥 ∈ 𝒫 𝐴(𝐴𝑥) ∈ 𝐵))
1817exlimdv 1937 . . . 4 ((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) → (∃𝑦 𝑦𝐵 → ∃𝑥 ∈ 𝒫 𝐴(𝐴𝑥) ∈ 𝐵))
191, 18syl5bi 241 . . 3 ((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) → (𝐵 ≠ ∅ → ∃𝑥 ∈ 𝒫 𝐴(𝐴𝑥) ∈ 𝐵))
20193impia 1115 . 2 ((𝐴𝑉𝐵 ⊆ 𝒫 𝐴𝐵 ≠ ∅) → ∃𝑥 ∈ 𝒫 𝐴(𝐴𝑥) ∈ 𝐵)
21 rabn0 4316 . 2 ({𝑥 ∈ 𝒫 𝐴 ∣ (𝐴𝑥) ∈ 𝐵} ≠ ∅ ↔ ∃𝑥 ∈ 𝒫 𝐴(𝐴𝑥) ∈ 𝐵)
2220, 21sylibr 233 1 ((𝐴𝑉𝐵 ⊆ 𝒫 𝐴𝐵 ≠ ∅) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝐴𝑥) ∈ 𝐵} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wne 2942  wrex 3064  {crab 3067  cdif 3880  wss 3883  c0 4253  𝒫 cpw 4530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254  df-pw 4532
This theorem is referenced by:  fin2i2  10005  isfin2-2  10006
  Copyright terms: Public domain W3C validator