MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem7 Structured version   Visualization version   GIF version

Theorem fin23lem7 9740
Description: Lemma for isfin2-2 9743. The componentwise complement of a nonempty collection of sets is nonempty. (Contributed by Stefan O'Rear, 31-Oct-2014.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
fin23lem7 ((𝐴𝑉𝐵 ⊆ 𝒫 𝐴𝐵 ≠ ∅) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝐴𝑥) ∈ 𝐵} ≠ ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem fin23lem7
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 n0 4312 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝐵)
2 difss 4110 . . . . . . . 8 (𝐴𝑦) ⊆ 𝐴
3 elpw2g 5249 . . . . . . . . 9 (𝐴𝑉 → ((𝐴𝑦) ∈ 𝒫 𝐴 ↔ (𝐴𝑦) ⊆ 𝐴))
43ad2antrr 724 . . . . . . . 8 (((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) ∧ 𝑦𝐵) → ((𝐴𝑦) ∈ 𝒫 𝐴 ↔ (𝐴𝑦) ⊆ 𝐴))
52, 4mpbiri 260 . . . . . . 7 (((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) ∧ 𝑦𝐵) → (𝐴𝑦) ∈ 𝒫 𝐴)
6 simpr 487 . . . . . . . . . . 11 ((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) → 𝐵 ⊆ 𝒫 𝐴)
76sselda 3969 . . . . . . . . . 10 (((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) ∧ 𝑦𝐵) → 𝑦 ∈ 𝒫 𝐴)
87elpwid 4552 . . . . . . . . 9 (((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) ∧ 𝑦𝐵) → 𝑦𝐴)
9 dfss4 4237 . . . . . . . . 9 (𝑦𝐴 ↔ (𝐴 ∖ (𝐴𝑦)) = 𝑦)
108, 9sylib 220 . . . . . . . 8 (((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) ∧ 𝑦𝐵) → (𝐴 ∖ (𝐴𝑦)) = 𝑦)
11 simpr 487 . . . . . . . 8 (((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) ∧ 𝑦𝐵) → 𝑦𝐵)
1210, 11eqeltrd 2915 . . . . . . 7 (((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) ∧ 𝑦𝐵) → (𝐴 ∖ (𝐴𝑦)) ∈ 𝐵)
13 difeq2 4095 . . . . . . . . 9 (𝑥 = (𝐴𝑦) → (𝐴𝑥) = (𝐴 ∖ (𝐴𝑦)))
1413eleq1d 2899 . . . . . . . 8 (𝑥 = (𝐴𝑦) → ((𝐴𝑥) ∈ 𝐵 ↔ (𝐴 ∖ (𝐴𝑦)) ∈ 𝐵))
1514rspcev 3625 . . . . . . 7 (((𝐴𝑦) ∈ 𝒫 𝐴 ∧ (𝐴 ∖ (𝐴𝑦)) ∈ 𝐵) → ∃𝑥 ∈ 𝒫 𝐴(𝐴𝑥) ∈ 𝐵)
165, 12, 15syl2anc 586 . . . . . 6 (((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) ∧ 𝑦𝐵) → ∃𝑥 ∈ 𝒫 𝐴(𝐴𝑥) ∈ 𝐵)
1716ex 415 . . . . 5 ((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) → (𝑦𝐵 → ∃𝑥 ∈ 𝒫 𝐴(𝐴𝑥) ∈ 𝐵))
1817exlimdv 1934 . . . 4 ((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) → (∃𝑦 𝑦𝐵 → ∃𝑥 ∈ 𝒫 𝐴(𝐴𝑥) ∈ 𝐵))
191, 18syl5bi 244 . . 3 ((𝐴𝑉𝐵 ⊆ 𝒫 𝐴) → (𝐵 ≠ ∅ → ∃𝑥 ∈ 𝒫 𝐴(𝐴𝑥) ∈ 𝐵))
20193impia 1113 . 2 ((𝐴𝑉𝐵 ⊆ 𝒫 𝐴𝐵 ≠ ∅) → ∃𝑥 ∈ 𝒫 𝐴(𝐴𝑥) ∈ 𝐵)
21 rabn0 4341 . 2 ({𝑥 ∈ 𝒫 𝐴 ∣ (𝐴𝑥) ∈ 𝐵} ≠ ∅ ↔ ∃𝑥 ∈ 𝒫 𝐴(𝐴𝑥) ∈ 𝐵)
2220, 21sylibr 236 1 ((𝐴𝑉𝐵 ⊆ 𝒫 𝐴𝐵 ≠ ∅) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝐴𝑥) ∈ 𝐵} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wne 3018  wrex 3141  {crab 3144  cdif 3935  wss 3938  c0 4293  𝒫 cpw 4541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-in 3945  df-ss 3954  df-nul 4294  df-pw 4543
This theorem is referenced by:  fin2i2  9742  isfin2-2  9743
  Copyright terms: Public domain W3C validator