Proof of Theorem fin23lem11
| Step | Hyp | Ref
| Expression |
| 1 | | difeq2 4100 |
. . . . 5
⊢ (𝑐 = 𝑥 → (𝐴 ∖ 𝑐) = (𝐴 ∖ 𝑥)) |
| 2 | 1 | eleq1d 2820 |
. . . 4
⊢ (𝑐 = 𝑥 → ((𝐴 ∖ 𝑐) ∈ 𝐵 ↔ (𝐴 ∖ 𝑥) ∈ 𝐵)) |
| 3 | 2 | elrab 3676 |
. . 3
⊢ (𝑥 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵)) |
| 4 | | simp2r 1201 |
. . . . 5
⊢ ((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) → (𝐴 ∖ 𝑥) ∈ 𝐵) |
| 5 | | fin23lem11.2 |
. . . . . . . . 9
⊢ (𝑤 = (𝐴 ∖ 𝑣) → (𝜑 ↔ 𝜃)) |
| 6 | 5 | notbid 318 |
. . . . . . . 8
⊢ (𝑤 = (𝐴 ∖ 𝑣) → (¬ 𝜑 ↔ ¬ 𝜃)) |
| 7 | | simpl3 1194 |
. . . . . . . 8
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) |
| 8 | | difeq2 4100 |
. . . . . . . . . 10
⊢ (𝑐 = (𝐴 ∖ 𝑣) → (𝐴 ∖ 𝑐) = (𝐴 ∖ (𝐴 ∖ 𝑣))) |
| 9 | 8 | eleq1d 2820 |
. . . . . . . . 9
⊢ (𝑐 = (𝐴 ∖ 𝑣) → ((𝐴 ∖ 𝑐) ∈ 𝐵 ↔ (𝐴 ∖ (𝐴 ∖ 𝑣)) ∈ 𝐵)) |
| 10 | | difss 4116 |
. . . . . . . . . 10
⊢ (𝐴 ∖ 𝑣) ⊆ 𝐴 |
| 11 | | ssun1 4158 |
. . . . . . . . . . . . 13
⊢ 𝐴 ⊆ (𝐴 ∪ 𝑥) |
| 12 | | undif1 4456 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∖ 𝑥) ∪ 𝑥) = (𝐴 ∪ 𝑥) |
| 13 | 11, 12 | sseqtrri 4013 |
. . . . . . . . . . . 12
⊢ 𝐴 ⊆ ((𝐴 ∖ 𝑥) ∪ 𝑥) |
| 14 | | simpl2r 1228 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → (𝐴 ∖ 𝑥) ∈ 𝐵) |
| 15 | | simpl2l 1227 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → 𝑥 ∈ 𝒫 𝐴) |
| 16 | | unexg 7742 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∖ 𝑥) ∈ 𝐵 ∧ 𝑥 ∈ 𝒫 𝐴) → ((𝐴 ∖ 𝑥) ∪ 𝑥) ∈ V) |
| 17 | 14, 15, 16 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → ((𝐴 ∖ 𝑥) ∪ 𝑥) ∈ V) |
| 18 | | ssexg 5298 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆ ((𝐴 ∖ 𝑥) ∪ 𝑥) ∧ ((𝐴 ∖ 𝑥) ∪ 𝑥) ∈ V) → 𝐴 ∈ V) |
| 19 | 13, 17, 18 | sylancr 587 |
. . . . . . . . . . 11
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → 𝐴 ∈ V) |
| 20 | | elpw2g 5308 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ V → ((𝐴 ∖ 𝑣) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ 𝑣) ⊆ 𝐴)) |
| 21 | 19, 20 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → ((𝐴 ∖ 𝑣) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ 𝑣) ⊆ 𝐴)) |
| 22 | 10, 21 | mpbiri 258 |
. . . . . . . . 9
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → (𝐴 ∖ 𝑣) ∈ 𝒫 𝐴) |
| 23 | | simpl1 1192 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → 𝐵 ⊆ 𝒫 𝐴) |
| 24 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → 𝑣 ∈ 𝐵) |
| 25 | 23, 24 | sseldd 3964 |
. . . . . . . . . . . 12
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → 𝑣 ∈ 𝒫 𝐴) |
| 26 | 25 | elpwid 4589 |
. . . . . . . . . . 11
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → 𝑣 ⊆ 𝐴) |
| 27 | | dfss4 4249 |
. . . . . . . . . . 11
⊢ (𝑣 ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ 𝑣)) = 𝑣) |
| 28 | 26, 27 | sylib 218 |
. . . . . . . . . 10
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → (𝐴 ∖ (𝐴 ∖ 𝑣)) = 𝑣) |
| 29 | 28, 24 | eqeltrd 2835 |
. . . . . . . . 9
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → (𝐴 ∖ (𝐴 ∖ 𝑣)) ∈ 𝐵) |
| 30 | 9, 22, 29 | elrabd 3678 |
. . . . . . . 8
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → (𝐴 ∖ 𝑣) ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵}) |
| 31 | 6, 7, 30 | rspcdva 3607 |
. . . . . . 7
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → ¬ 𝜃) |
| 32 | | simplrl 776 |
. . . . . . . . . . 11
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵)) ∧ 𝑣 ∈ 𝐵) → 𝑥 ∈ 𝒫 𝐴) |
| 33 | 32 | elpwid 4589 |
. . . . . . . . . 10
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵)) ∧ 𝑣 ∈ 𝐵) → 𝑥 ⊆ 𝐴) |
| 34 | | ssel2 3958 |
. . . . . . . . . . . 12
⊢ ((𝐵 ⊆ 𝒫 𝐴 ∧ 𝑣 ∈ 𝐵) → 𝑣 ∈ 𝒫 𝐴) |
| 35 | 34 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵)) ∧ 𝑣 ∈ 𝐵) → 𝑣 ∈ 𝒫 𝐴) |
| 36 | 35 | elpwid 4589 |
. . . . . . . . . 10
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵)) ∧ 𝑣 ∈ 𝐵) → 𝑣 ⊆ 𝐴) |
| 37 | | fin23lem11.3 |
. . . . . . . . . 10
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑣 ⊆ 𝐴) → (𝜒 ↔ 𝜃)) |
| 38 | 33, 36, 37 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵)) ∧ 𝑣 ∈ 𝐵) → (𝜒 ↔ 𝜃)) |
| 39 | 38 | notbid 318 |
. . . . . . . 8
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵)) ∧ 𝑣 ∈ 𝐵) → (¬ 𝜒 ↔ ¬ 𝜃)) |
| 40 | 39 | 3adantl3 1169 |
. . . . . . 7
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → (¬ 𝜒 ↔ ¬ 𝜃)) |
| 41 | 31, 40 | mpbird 257 |
. . . . . 6
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → ¬ 𝜒) |
| 42 | 41 | ralrimiva 3133 |
. . . . 5
⊢ ((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) → ∀𝑣 ∈ 𝐵 ¬ 𝜒) |
| 43 | | fin23lem11.1 |
. . . . . . . 8
⊢ (𝑧 = (𝐴 ∖ 𝑥) → (𝜓 ↔ 𝜒)) |
| 44 | 43 | notbid 318 |
. . . . . . 7
⊢ (𝑧 = (𝐴 ∖ 𝑥) → (¬ 𝜓 ↔ ¬ 𝜒)) |
| 45 | 44 | ralbidv 3164 |
. . . . . 6
⊢ (𝑧 = (𝐴 ∖ 𝑥) → (∀𝑣 ∈ 𝐵 ¬ 𝜓 ↔ ∀𝑣 ∈ 𝐵 ¬ 𝜒)) |
| 46 | 45 | rspcev 3606 |
. . . . 5
⊢ (((𝐴 ∖ 𝑥) ∈ 𝐵 ∧ ∀𝑣 ∈ 𝐵 ¬ 𝜒) → ∃𝑧 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ¬ 𝜓) |
| 47 | 4, 42, 46 | syl2anc 584 |
. . . 4
⊢ ((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) → ∃𝑧 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ¬ 𝜓) |
| 48 | 47 | 3exp 1119 |
. . 3
⊢ (𝐵 ⊆ 𝒫 𝐴 → ((𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) → (∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑 → ∃𝑧 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ¬ 𝜓))) |
| 49 | 3, 48 | biimtrid 242 |
. 2
⊢ (𝐵 ⊆ 𝒫 𝐴 → (𝑥 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} → (∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑 → ∃𝑧 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ¬ 𝜓))) |
| 50 | 49 | rexlimdv 3140 |
1
⊢ (𝐵 ⊆ 𝒫 𝐴 → (∃𝑥 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵}∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑 → ∃𝑧 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ¬ 𝜓)) |