Proof of Theorem fin23lem11
Step | Hyp | Ref
| Expression |
1 | | difeq2 3918 |
. . . . 5
⊢ (𝑐 = 𝑥 → (𝐴 ∖ 𝑐) = (𝐴 ∖ 𝑥)) |
2 | 1 | eleq1d 2861 |
. . . 4
⊢ (𝑐 = 𝑥 → ((𝐴 ∖ 𝑐) ∈ 𝐵 ↔ (𝐴 ∖ 𝑥) ∈ 𝐵)) |
3 | 2 | elrab 3554 |
. . 3
⊢ (𝑥 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵)) |
4 | | simp2r 1258 |
. . . . 5
⊢ ((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) → (𝐴 ∖ 𝑥) ∈ 𝐵) |
5 | | fin23lem11.2 |
. . . . . . . . 9
⊢ (𝑤 = (𝐴 ∖ 𝑣) → (𝜑 ↔ 𝜃)) |
6 | 5 | notbid 310 |
. . . . . . . 8
⊢ (𝑤 = (𝐴 ∖ 𝑣) → (¬ 𝜑 ↔ ¬ 𝜃)) |
7 | | simpl3 1247 |
. . . . . . . 8
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) |
8 | | difss 3933 |
. . . . . . . . . 10
⊢ (𝐴 ∖ 𝑣) ⊆ 𝐴 |
9 | | ssun1 3972 |
. . . . . . . . . . . . 13
⊢ 𝐴 ⊆ (𝐴 ∪ 𝑥) |
10 | | undif1 4235 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∖ 𝑥) ∪ 𝑥) = (𝐴 ∪ 𝑥) |
11 | 9, 10 | sseqtr4i 3832 |
. . . . . . . . . . . 12
⊢ 𝐴 ⊆ ((𝐴 ∖ 𝑥) ∪ 𝑥) |
12 | | simpl2r 1300 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → (𝐴 ∖ 𝑥) ∈ 𝐵) |
13 | | simpl2l 1298 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → 𝑥 ∈ 𝒫 𝐴) |
14 | | unexg 7191 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∖ 𝑥) ∈ 𝐵 ∧ 𝑥 ∈ 𝒫 𝐴) → ((𝐴 ∖ 𝑥) ∪ 𝑥) ∈ V) |
15 | 12, 13, 14 | syl2anc 580 |
. . . . . . . . . . . 12
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → ((𝐴 ∖ 𝑥) ∪ 𝑥) ∈ V) |
16 | | ssexg 4997 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆ ((𝐴 ∖ 𝑥) ∪ 𝑥) ∧ ((𝐴 ∖ 𝑥) ∪ 𝑥) ∈ V) → 𝐴 ∈ V) |
17 | 11, 15, 16 | sylancr 582 |
. . . . . . . . . . 11
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → 𝐴 ∈ V) |
18 | | elpw2g 5017 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ V → ((𝐴 ∖ 𝑣) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ 𝑣) ⊆ 𝐴)) |
19 | 17, 18 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → ((𝐴 ∖ 𝑣) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ 𝑣) ⊆ 𝐴)) |
20 | 8, 19 | mpbiri 250 |
. . . . . . . . 9
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → (𝐴 ∖ 𝑣) ∈ 𝒫 𝐴) |
21 | | simpl1 1243 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → 𝐵 ⊆ 𝒫 𝐴) |
22 | | simpr 478 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → 𝑣 ∈ 𝐵) |
23 | 21, 22 | sseldd 3797 |
. . . . . . . . . . . 12
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → 𝑣 ∈ 𝒫 𝐴) |
24 | 23 | elpwid 4359 |
. . . . . . . . . . 11
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → 𝑣 ⊆ 𝐴) |
25 | | dfss4 4057 |
. . . . . . . . . . 11
⊢ (𝑣 ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ 𝑣)) = 𝑣) |
26 | 24, 25 | sylib 210 |
. . . . . . . . . 10
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → (𝐴 ∖ (𝐴 ∖ 𝑣)) = 𝑣) |
27 | 26, 22 | eqeltrd 2876 |
. . . . . . . . 9
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → (𝐴 ∖ (𝐴 ∖ 𝑣)) ∈ 𝐵) |
28 | | difeq2 3918 |
. . . . . . . . . . 11
⊢ (𝑐 = (𝐴 ∖ 𝑣) → (𝐴 ∖ 𝑐) = (𝐴 ∖ (𝐴 ∖ 𝑣))) |
29 | 28 | eleq1d 2861 |
. . . . . . . . . 10
⊢ (𝑐 = (𝐴 ∖ 𝑣) → ((𝐴 ∖ 𝑐) ∈ 𝐵 ↔ (𝐴 ∖ (𝐴 ∖ 𝑣)) ∈ 𝐵)) |
30 | 29 | elrab 3554 |
. . . . . . . . 9
⊢ ((𝐴 ∖ 𝑣) ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ↔ ((𝐴 ∖ 𝑣) ∈ 𝒫 𝐴 ∧ (𝐴 ∖ (𝐴 ∖ 𝑣)) ∈ 𝐵)) |
31 | 20, 27, 30 | sylanbrc 579 |
. . . . . . . 8
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → (𝐴 ∖ 𝑣) ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵}) |
32 | 6, 7, 31 | rspcdva 3501 |
. . . . . . 7
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → ¬ 𝜃) |
33 | | simplrl 796 |
. . . . . . . . . . 11
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵)) ∧ 𝑣 ∈ 𝐵) → 𝑥 ∈ 𝒫 𝐴) |
34 | 33 | elpwid 4359 |
. . . . . . . . . 10
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵)) ∧ 𝑣 ∈ 𝐵) → 𝑥 ⊆ 𝐴) |
35 | | ssel2 3791 |
. . . . . . . . . . . 12
⊢ ((𝐵 ⊆ 𝒫 𝐴 ∧ 𝑣 ∈ 𝐵) → 𝑣 ∈ 𝒫 𝐴) |
36 | 35 | adantlr 707 |
. . . . . . . . . . 11
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵)) ∧ 𝑣 ∈ 𝐵) → 𝑣 ∈ 𝒫 𝐴) |
37 | 36 | elpwid 4359 |
. . . . . . . . . 10
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵)) ∧ 𝑣 ∈ 𝐵) → 𝑣 ⊆ 𝐴) |
38 | | fin23lem11.3 |
. . . . . . . . . 10
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑣 ⊆ 𝐴) → (𝜒 ↔ 𝜃)) |
39 | 34, 37, 38 | syl2anc 580 |
. . . . . . . . 9
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵)) ∧ 𝑣 ∈ 𝐵) → (𝜒 ↔ 𝜃)) |
40 | 39 | notbid 310 |
. . . . . . . 8
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵)) ∧ 𝑣 ∈ 𝐵) → (¬ 𝜒 ↔ ¬ 𝜃)) |
41 | 40 | 3adantl3 1210 |
. . . . . . 7
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → (¬ 𝜒 ↔ ¬ 𝜃)) |
42 | 32, 41 | mpbird 249 |
. . . . . 6
⊢ (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣 ∈ 𝐵) → ¬ 𝜒) |
43 | 42 | ralrimiva 3145 |
. . . . 5
⊢ ((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) → ∀𝑣 ∈ 𝐵 ¬ 𝜒) |
44 | | fin23lem11.1 |
. . . . . . . 8
⊢ (𝑧 = (𝐴 ∖ 𝑥) → (𝜓 ↔ 𝜒)) |
45 | 44 | notbid 310 |
. . . . . . 7
⊢ (𝑧 = (𝐴 ∖ 𝑥) → (¬ 𝜓 ↔ ¬ 𝜒)) |
46 | 45 | ralbidv 3165 |
. . . . . 6
⊢ (𝑧 = (𝐴 ∖ 𝑥) → (∀𝑣 ∈ 𝐵 ¬ 𝜓 ↔ ∀𝑣 ∈ 𝐵 ¬ 𝜒)) |
47 | 46 | rspcev 3495 |
. . . . 5
⊢ (((𝐴 ∖ 𝑥) ∈ 𝐵 ∧ ∀𝑣 ∈ 𝐵 ¬ 𝜒) → ∃𝑧 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ¬ 𝜓) |
48 | 4, 43, 47 | syl2anc 580 |
. . . 4
⊢ ((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑) → ∃𝑧 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ¬ 𝜓) |
49 | 48 | 3exp 1149 |
. . 3
⊢ (𝐵 ⊆ 𝒫 𝐴 → ((𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝐵) → (∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑 → ∃𝑧 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ¬ 𝜓))) |
50 | 3, 49 | syl5bi 234 |
. 2
⊢ (𝐵 ⊆ 𝒫 𝐴 → (𝑥 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} → (∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑 → ∃𝑧 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ¬ 𝜓))) |
51 | 50 | rexlimdv 3209 |
1
⊢ (𝐵 ⊆ 𝒫 𝐴 → (∃𝑥 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵}∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑐) ∈ 𝐵} ¬ 𝜑 → ∃𝑧 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ¬ 𝜓)) |