MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem11 Structured version   Visualization version   GIF version

Theorem fin23lem11 9425
Description: Lemma for isfin2-2 9427. (Contributed by Stefan O'Rear, 31-Oct-2014.) (Revised by Mario Carneiro, 16-May-2015.)
Hypotheses
Ref Expression
fin23lem11.1 (𝑧 = (𝐴𝑥) → (𝜓𝜒))
fin23lem11.2 (𝑤 = (𝐴𝑣) → (𝜑𝜃))
fin23lem11.3 ((𝑥𝐴𝑣𝐴) → (𝜒𝜃))
Assertion
Ref Expression
fin23lem11 (𝐵 ⊆ 𝒫 𝐴 → (∃𝑥 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵}∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑 → ∃𝑧𝐵𝑣𝐵 ¬ 𝜓))
Distinct variable groups:   𝑣,𝑐,𝑤,𝑥,𝑧,𝐴   𝐵,𝑐,𝑣,𝑤,𝑥,𝑧   𝜒,𝑧   𝜑,𝑣   𝜓,𝑥   𝜃,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑧,𝑤,𝑐)   𝜓(𝑧,𝑤,𝑣,𝑐)   𝜒(𝑥,𝑤,𝑣,𝑐)   𝜃(𝑥,𝑧,𝑣,𝑐)

Proof of Theorem fin23lem11
StepHypRef Expression
1 difeq2 3918 . . . . 5 (𝑐 = 𝑥 → (𝐴𝑐) = (𝐴𝑥))
21eleq1d 2861 . . . 4 (𝑐 = 𝑥 → ((𝐴𝑐) ∈ 𝐵 ↔ (𝐴𝑥) ∈ 𝐵))
32elrab 3554 . . 3 (𝑥 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵))
4 simp2r 1258 . . . . 5 ((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) → (𝐴𝑥) ∈ 𝐵)
5 fin23lem11.2 . . . . . . . . 9 (𝑤 = (𝐴𝑣) → (𝜑𝜃))
65notbid 310 . . . . . . . 8 (𝑤 = (𝐴𝑣) → (¬ 𝜑 ↔ ¬ 𝜃))
7 simpl3 1247 . . . . . . . 8 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑)
8 difss 3933 . . . . . . . . . 10 (𝐴𝑣) ⊆ 𝐴
9 ssun1 3972 . . . . . . . . . . . . 13 𝐴 ⊆ (𝐴𝑥)
10 undif1 4235 . . . . . . . . . . . . 13 ((𝐴𝑥) ∪ 𝑥) = (𝐴𝑥)
119, 10sseqtr4i 3832 . . . . . . . . . . . 12 𝐴 ⊆ ((𝐴𝑥) ∪ 𝑥)
12 simpl2r 1300 . . . . . . . . . . . . 13 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → (𝐴𝑥) ∈ 𝐵)
13 simpl2l 1298 . . . . . . . . . . . . 13 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → 𝑥 ∈ 𝒫 𝐴)
14 unexg 7191 . . . . . . . . . . . . 13 (((𝐴𝑥) ∈ 𝐵𝑥 ∈ 𝒫 𝐴) → ((𝐴𝑥) ∪ 𝑥) ∈ V)
1512, 13, 14syl2anc 580 . . . . . . . . . . . 12 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → ((𝐴𝑥) ∪ 𝑥) ∈ V)
16 ssexg 4997 . . . . . . . . . . . 12 ((𝐴 ⊆ ((𝐴𝑥) ∪ 𝑥) ∧ ((𝐴𝑥) ∪ 𝑥) ∈ V) → 𝐴 ∈ V)
1711, 15, 16sylancr 582 . . . . . . . . . . 11 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → 𝐴 ∈ V)
18 elpw2g 5017 . . . . . . . . . . 11 (𝐴 ∈ V → ((𝐴𝑣) ∈ 𝒫 𝐴 ↔ (𝐴𝑣) ⊆ 𝐴))
1917, 18syl 17 . . . . . . . . . 10 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → ((𝐴𝑣) ∈ 𝒫 𝐴 ↔ (𝐴𝑣) ⊆ 𝐴))
208, 19mpbiri 250 . . . . . . . . 9 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → (𝐴𝑣) ∈ 𝒫 𝐴)
21 simpl1 1243 . . . . . . . . . . . . 13 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → 𝐵 ⊆ 𝒫 𝐴)
22 simpr 478 . . . . . . . . . . . . 13 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → 𝑣𝐵)
2321, 22sseldd 3797 . . . . . . . . . . . 12 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → 𝑣 ∈ 𝒫 𝐴)
2423elpwid 4359 . . . . . . . . . . 11 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → 𝑣𝐴)
25 dfss4 4057 . . . . . . . . . . 11 (𝑣𝐴 ↔ (𝐴 ∖ (𝐴𝑣)) = 𝑣)
2624, 25sylib 210 . . . . . . . . . 10 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → (𝐴 ∖ (𝐴𝑣)) = 𝑣)
2726, 22eqeltrd 2876 . . . . . . . . 9 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → (𝐴 ∖ (𝐴𝑣)) ∈ 𝐵)
28 difeq2 3918 . . . . . . . . . . 11 (𝑐 = (𝐴𝑣) → (𝐴𝑐) = (𝐴 ∖ (𝐴𝑣)))
2928eleq1d 2861 . . . . . . . . . 10 (𝑐 = (𝐴𝑣) → ((𝐴𝑐) ∈ 𝐵 ↔ (𝐴 ∖ (𝐴𝑣)) ∈ 𝐵))
3029elrab 3554 . . . . . . . . 9 ((𝐴𝑣) ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ↔ ((𝐴𝑣) ∈ 𝒫 𝐴 ∧ (𝐴 ∖ (𝐴𝑣)) ∈ 𝐵))
3120, 27, 30sylanbrc 579 . . . . . . . 8 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → (𝐴𝑣) ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵})
326, 7, 31rspcdva 3501 . . . . . . 7 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → ¬ 𝜃)
33 simplrl 796 . . . . . . . . . . 11 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵)) ∧ 𝑣𝐵) → 𝑥 ∈ 𝒫 𝐴)
3433elpwid 4359 . . . . . . . . . 10 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵)) ∧ 𝑣𝐵) → 𝑥𝐴)
35 ssel2 3791 . . . . . . . . . . . 12 ((𝐵 ⊆ 𝒫 𝐴𝑣𝐵) → 𝑣 ∈ 𝒫 𝐴)
3635adantlr 707 . . . . . . . . . . 11 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵)) ∧ 𝑣𝐵) → 𝑣 ∈ 𝒫 𝐴)
3736elpwid 4359 . . . . . . . . . 10 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵)) ∧ 𝑣𝐵) → 𝑣𝐴)
38 fin23lem11.3 . . . . . . . . . 10 ((𝑥𝐴𝑣𝐴) → (𝜒𝜃))
3934, 37, 38syl2anc 580 . . . . . . . . 9 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵)) ∧ 𝑣𝐵) → (𝜒𝜃))
4039notbid 310 . . . . . . . 8 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵)) ∧ 𝑣𝐵) → (¬ 𝜒 ↔ ¬ 𝜃))
41403adantl3 1210 . . . . . . 7 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → (¬ 𝜒 ↔ ¬ 𝜃))
4232, 41mpbird 249 . . . . . 6 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → ¬ 𝜒)
4342ralrimiva 3145 . . . . 5 ((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) → ∀𝑣𝐵 ¬ 𝜒)
44 fin23lem11.1 . . . . . . . 8 (𝑧 = (𝐴𝑥) → (𝜓𝜒))
4544notbid 310 . . . . . . 7 (𝑧 = (𝐴𝑥) → (¬ 𝜓 ↔ ¬ 𝜒))
4645ralbidv 3165 . . . . . 6 (𝑧 = (𝐴𝑥) → (∀𝑣𝐵 ¬ 𝜓 ↔ ∀𝑣𝐵 ¬ 𝜒))
4746rspcev 3495 . . . . 5 (((𝐴𝑥) ∈ 𝐵 ∧ ∀𝑣𝐵 ¬ 𝜒) → ∃𝑧𝐵𝑣𝐵 ¬ 𝜓)
484, 43, 47syl2anc 580 . . . 4 ((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) → ∃𝑧𝐵𝑣𝐵 ¬ 𝜓)
49483exp 1149 . . 3 (𝐵 ⊆ 𝒫 𝐴 → ((𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) → (∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑 → ∃𝑧𝐵𝑣𝐵 ¬ 𝜓)))
503, 49syl5bi 234 . 2 (𝐵 ⊆ 𝒫 𝐴 → (𝑥 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} → (∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑 → ∃𝑧𝐵𝑣𝐵 ¬ 𝜓)))
5150rexlimdv 3209 1 (𝐵 ⊆ 𝒫 𝐴 → (∃𝑥 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵}∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑 → ∃𝑧𝐵𝑣𝐵 ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wral 3087  wrex 3088  {crab 3091  Vcvv 3383  cdif 3764  cun 3765  wss 3767  𝒫 cpw 4347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pr 5095  ax-un 7181
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ral 3092  df-rex 3093  df-rab 3096  df-v 3385  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4114  df-pw 4349  df-sn 4367  df-pr 4369  df-uni 4627
This theorem is referenced by:  fin2i2  9426  isfin2-2  9427
  Copyright terms: Public domain W3C validator