MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnop Structured version   Visualization version   GIF version

Theorem fnop 6538
Description: The first argument of an ordered pair in a function belongs to the function's domain. (Contributed by NM, 8-Aug-1994.)
Assertion
Ref Expression
fnop ((𝐹 Fn 𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝐹) → 𝐵𝐴)

Proof of Theorem fnop
StepHypRef Expression
1 df-br 5079 . 2 (𝐵𝐹𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐹)
2 fnbr 6537 . 2 ((𝐹 Fn 𝐴𝐵𝐹𝐶) → 𝐵𝐴)
31, 2sylan2br 594 1 ((𝐹 Fn 𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝐹) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  cop 4572   class class class wbr 5078   Fn wfn 6425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-xp 5594  df-rel 5595  df-dm 5598  df-fun 6432  df-fn 6433
This theorem is referenced by:  2elresin  6549  wfrlem12OLD  8135  tfrlem9  8200  wlkp1lem2  28022  poimirlem4  35760
  Copyright terms: Public domain W3C validator