Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnop | Structured version Visualization version GIF version |
Description: The first argument of an ordered pair in a function belongs to the function's domain. (Contributed by NM, 8-Aug-1994.) |
Ref | Expression |
---|---|
fnop | ⊢ ((𝐹 Fn 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝐹) → 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5032 | . 2 ⊢ (𝐵𝐹𝐶 ↔ 〈𝐵, 𝐶〉 ∈ 𝐹) | |
2 | fnbr 6446 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵𝐹𝐶) → 𝐵 ∈ 𝐴) | |
3 | 1, 2 | sylan2br 598 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝐹) → 𝐵 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2113 〈cop 4523 class class class wbr 5031 Fn wfn 6335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-ext 2710 ax-sep 5168 ax-nul 5175 ax-pr 5297 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rex 3059 df-v 3400 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-sn 4518 df-pr 4520 df-op 4524 df-br 5032 df-opab 5094 df-xp 5532 df-rel 5533 df-dm 5536 df-fun 6342 df-fn 6343 |
This theorem is referenced by: 2elresin 6458 wfrlem12 7996 tfrlem9 8051 wlkp1lem2 27616 poimirlem4 35401 |
Copyright terms: Public domain | W3C validator |