| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnop | Structured version Visualization version GIF version | ||
| Description: The first argument of an ordered pair in a function belongs to the function's domain. (Contributed by NM, 8-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnop | ⊢ ((𝐹 Fn 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝐹) → 𝐵 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5087 | . 2 ⊢ (𝐵𝐹𝐶 ↔ 〈𝐵, 𝐶〉 ∈ 𝐹) | |
| 2 | fnbr 6584 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵𝐹𝐶) → 𝐵 ∈ 𝐴) | |
| 3 | 1, 2 | sylan2br 595 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝐹) → 𝐵 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 〈cop 4577 class class class wbr 5086 Fn wfn 6471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-rel 5618 df-dm 5621 df-fun 6478 df-fn 6479 |
| This theorem is referenced by: 2elresin 6597 tfrlem9 8299 wlkp1lem2 29646 poimirlem4 37664 |
| Copyright terms: Public domain | W3C validator |