MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnop Structured version   Visualization version   GIF version

Theorem fnop 6649
Description: The first argument of an ordered pair in a function belongs to the function's domain. (Contributed by NM, 8-Aug-1994.)
Assertion
Ref Expression
fnop ((𝐹 Fn 𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝐹) → 𝐵𝐴)

Proof of Theorem fnop
StepHypRef Expression
1 df-br 5140 . 2 (𝐵𝐹𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐹)
2 fnbr 6648 . 2 ((𝐹 Fn 𝐴𝐵𝐹𝐶) → 𝐵𝐴)
31, 2sylan2br 594 1 ((𝐹 Fn 𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝐹) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2098  cop 4627   class class class wbr 5139   Fn wfn 6529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-br 5140  df-opab 5202  df-xp 5673  df-rel 5674  df-dm 5677  df-fun 6536  df-fn 6537
This theorem is referenced by:  2elresin  6662  wfrlem12OLD  8316  tfrlem9  8381  wlkp1lem2  29403  poimirlem4  36986
  Copyright terms: Public domain W3C validator