MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnop Structured version   Visualization version   GIF version

Theorem fnop 6630
Description: The first argument of an ordered pair in a function belongs to the function's domain. (Contributed by NM, 8-Aug-1994.)
Assertion
Ref Expression
fnop ((𝐹 Fn 𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝐹) → 𝐵𝐴)

Proof of Theorem fnop
StepHypRef Expression
1 df-br 5111 . 2 (𝐵𝐹𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐹)
2 fnbr 6629 . 2 ((𝐹 Fn 𝐴𝐵𝐹𝐶) → 𝐵𝐴)
31, 2sylan2br 595 1 ((𝐹 Fn 𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝐹) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  cop 4598   class class class wbr 5110   Fn wfn 6509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-dm 5651  df-fun 6516  df-fn 6517
This theorem is referenced by:  2elresin  6642  tfrlem9  8356  wlkp1lem2  29609  poimirlem4  37625
  Copyright terms: Public domain W3C validator