MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnop Structured version   Visualization version   GIF version

Theorem fnop 6658
Description: The first argument of an ordered pair in a function belongs to the function's domain. (Contributed by NM, 8-Aug-1994.)
Assertion
Ref Expression
fnop ((𝐹 Fn 𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝐹) → 𝐵𝐴)

Proof of Theorem fnop
StepHypRef Expression
1 df-br 5144 . 2 (𝐵𝐹𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐹)
2 fnbr 6657 . 2 ((𝐹 Fn 𝐴𝐵𝐹𝐶) → 𝐵𝐴)
31, 2sylan2br 594 1 ((𝐹 Fn 𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝐹) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2099  cop 4631   class class class wbr 5143   Fn wfn 6538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-br 5144  df-opab 5206  df-xp 5679  df-rel 5680  df-dm 5683  df-fun 6545  df-fn 6546
This theorem is referenced by:  2elresin  6671  wfrlem12OLD  8335  tfrlem9  8400  wlkp1lem2  29482  poimirlem4  37092
  Copyright terms: Public domain W3C validator