| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlkp1lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for wlkp1 29656. (Contributed by AV, 6-Mar-2021.) |
| Ref | Expression |
|---|---|
| wlkp1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| wlkp1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| wlkp1.f | ⊢ (𝜑 → Fun 𝐼) |
| wlkp1.a | ⊢ (𝜑 → 𝐼 ∈ Fin) |
| wlkp1.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| wlkp1.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| wlkp1.d | ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) |
| wlkp1.w | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| wlkp1.n | ⊢ 𝑁 = (♯‘𝐹) |
| wlkp1.e | ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) |
| wlkp1.x | ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) |
| wlkp1.u | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) |
| wlkp1.h | ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) |
| Ref | Expression |
|---|---|
| wlkp1lem2 | ⊢ (𝜑 → (♯‘𝐻) = (𝑁 + 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkp1.h | . . . 4 ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) | |
| 2 | 1 | fveq2i 6825 | . . 3 ⊢ (♯‘𝐻) = (♯‘(𝐹 ∪ {〈𝑁, 𝐵〉})) |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (♯‘𝐻) = (♯‘(𝐹 ∪ {〈𝑁, 𝐵〉}))) |
| 4 | opex 5404 | . . 3 ⊢ 〈𝑁, 𝐵〉 ∈ V | |
| 5 | wlkp1.w | . . . . 5 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | |
| 6 | wlkp1.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 7 | 6 | wlkf 29591 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
| 8 | wrdfin 14436 | . . . . 5 ⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹 ∈ Fin) | |
| 9 | 5, 7, 8 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ Fin) |
| 10 | wlkp1.n | . . . . . 6 ⊢ 𝑁 = (♯‘𝐹) | |
| 11 | fzonel 13570 | . . . . . . . 8 ⊢ ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹)) | |
| 12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹))) |
| 13 | eleq1 2819 | . . . . . . . 8 ⊢ (𝑁 = (♯‘𝐹) → (𝑁 ∈ (0..^(♯‘𝐹)) ↔ (♯‘𝐹) ∈ (0..^(♯‘𝐹)))) | |
| 14 | 13 | notbid 318 | . . . . . . 7 ⊢ (𝑁 = (♯‘𝐹) → (¬ 𝑁 ∈ (0..^(♯‘𝐹)) ↔ ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹)))) |
| 15 | 12, 14 | imbitrrid 246 | . . . . . 6 ⊢ (𝑁 = (♯‘𝐹) → (𝜑 → ¬ 𝑁 ∈ (0..^(♯‘𝐹)))) |
| 16 | 10, 15 | ax-mp 5 | . . . . 5 ⊢ (𝜑 → ¬ 𝑁 ∈ (0..^(♯‘𝐹))) |
| 17 | wrdfn 14432 | . . . . . 6 ⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹 Fn (0..^(♯‘𝐹))) | |
| 18 | fnop 6590 | . . . . . . 7 ⊢ ((𝐹 Fn (0..^(♯‘𝐹)) ∧ 〈𝑁, 𝐵〉 ∈ 𝐹) → 𝑁 ∈ (0..^(♯‘𝐹))) | |
| 19 | 18 | ex 412 | . . . . . 6 ⊢ (𝐹 Fn (0..^(♯‘𝐹)) → (〈𝑁, 𝐵〉 ∈ 𝐹 → 𝑁 ∈ (0..^(♯‘𝐹)))) |
| 20 | 5, 7, 17, 19 | 4syl 19 | . . . . 5 ⊢ (𝜑 → (〈𝑁, 𝐵〉 ∈ 𝐹 → 𝑁 ∈ (0..^(♯‘𝐹)))) |
| 21 | 16, 20 | mtod 198 | . . . 4 ⊢ (𝜑 → ¬ 〈𝑁, 𝐵〉 ∈ 𝐹) |
| 22 | 9, 21 | jca 511 | . . 3 ⊢ (𝜑 → (𝐹 ∈ Fin ∧ ¬ 〈𝑁, 𝐵〉 ∈ 𝐹)) |
| 23 | hashunsng 14296 | . . 3 ⊢ (〈𝑁, 𝐵〉 ∈ V → ((𝐹 ∈ Fin ∧ ¬ 〈𝑁, 𝐵〉 ∈ 𝐹) → (♯‘(𝐹 ∪ {〈𝑁, 𝐵〉})) = ((♯‘𝐹) + 1))) | |
| 24 | 4, 22, 23 | mpsyl 68 | . 2 ⊢ (𝜑 → (♯‘(𝐹 ∪ {〈𝑁, 𝐵〉})) = ((♯‘𝐹) + 1)) |
| 25 | 10 | eqcomi 2740 | . . . 4 ⊢ (♯‘𝐹) = 𝑁 |
| 26 | 25 | a1i 11 | . . 3 ⊢ (𝜑 → (♯‘𝐹) = 𝑁) |
| 27 | 26 | oveq1d 7361 | . 2 ⊢ (𝜑 → ((♯‘𝐹) + 1) = (𝑁 + 1)) |
| 28 | 3, 24, 27 | 3eqtrd 2770 | 1 ⊢ (𝜑 → (♯‘𝐻) = (𝑁 + 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cun 3900 ⊆ wss 3902 {csn 4576 {cpr 4578 〈cop 4582 class class class wbr 5091 dom cdm 5616 Fun wfun 6475 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 0cc0 11003 1c1 11004 + caddc 11006 ..^cfzo 13551 ♯chash 14234 Word cword 14417 Vtxcvtx 28972 iEdgciedg 28973 Edgcedg 29023 Walkscwlks 29573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9791 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 df-fzo 13552 df-hash 14235 df-word 14418 df-wlks 29576 |
| This theorem is referenced by: wlkp1lem8 29655 wlkp1 29656 eupthp1 30191 |
| Copyright terms: Public domain | W3C validator |