MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkp1lem2 Structured version   Visualization version   GIF version

Theorem wlkp1lem2 27944
Description: Lemma for wlkp1 27951. (Contributed by AV, 6-Mar-2021.)
Hypotheses
Ref Expression
wlkp1.v 𝑉 = (Vtx‘𝐺)
wlkp1.i 𝐼 = (iEdg‘𝐺)
wlkp1.f (𝜑 → Fun 𝐼)
wlkp1.a (𝜑𝐼 ∈ Fin)
wlkp1.b (𝜑𝐵𝑊)
wlkp1.c (𝜑𝐶𝑉)
wlkp1.d (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
wlkp1.w (𝜑𝐹(Walks‘𝐺)𝑃)
wlkp1.n 𝑁 = (♯‘𝐹)
wlkp1.e (𝜑𝐸 ∈ (Edg‘𝐺))
wlkp1.x (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
wlkp1.u (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
wlkp1.h 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
Assertion
Ref Expression
wlkp1lem2 (𝜑 → (♯‘𝐻) = (𝑁 + 1))

Proof of Theorem wlkp1lem2
StepHypRef Expression
1 wlkp1.h . . . 4 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
21fveq2i 6759 . . 3 (♯‘𝐻) = (♯‘(𝐹 ∪ {⟨𝑁, 𝐵⟩}))
32a1i 11 . 2 (𝜑 → (♯‘𝐻) = (♯‘(𝐹 ∪ {⟨𝑁, 𝐵⟩})))
4 opex 5373 . . 3 𝑁, 𝐵⟩ ∈ V
5 wlkp1.w . . . . 5 (𝜑𝐹(Walks‘𝐺)𝑃)
6 wlkp1.i . . . . . 6 𝐼 = (iEdg‘𝐺)
76wlkf 27884 . . . . 5 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
8 wrdfin 14163 . . . . 5 (𝐹 ∈ Word dom 𝐼𝐹 ∈ Fin)
95, 7, 83syl 18 . . . 4 (𝜑𝐹 ∈ Fin)
10 wlkp1.n . . . . . 6 𝑁 = (♯‘𝐹)
11 fzonel 13329 . . . . . . . 8 ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹))
1211a1i 11 . . . . . . 7 (𝜑 → ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹)))
13 eleq1 2826 . . . . . . . 8 (𝑁 = (♯‘𝐹) → (𝑁 ∈ (0..^(♯‘𝐹)) ↔ (♯‘𝐹) ∈ (0..^(♯‘𝐹))))
1413notbid 317 . . . . . . 7 (𝑁 = (♯‘𝐹) → (¬ 𝑁 ∈ (0..^(♯‘𝐹)) ↔ ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹))))
1512, 14syl5ibr 245 . . . . . 6 (𝑁 = (♯‘𝐹) → (𝜑 → ¬ 𝑁 ∈ (0..^(♯‘𝐹))))
1610, 15ax-mp 5 . . . . 5 (𝜑 → ¬ 𝑁 ∈ (0..^(♯‘𝐹)))
17 wrdfn 14159 . . . . . . 7 (𝐹 ∈ Word dom 𝐼𝐹 Fn (0..^(♯‘𝐹)))
185, 7, 173syl 18 . . . . . 6 (𝜑𝐹 Fn (0..^(♯‘𝐹)))
19 fnop 6526 . . . . . . 7 ((𝐹 Fn (0..^(♯‘𝐹)) ∧ ⟨𝑁, 𝐵⟩ ∈ 𝐹) → 𝑁 ∈ (0..^(♯‘𝐹)))
2019ex 412 . . . . . 6 (𝐹 Fn (0..^(♯‘𝐹)) → (⟨𝑁, 𝐵⟩ ∈ 𝐹𝑁 ∈ (0..^(♯‘𝐹))))
2118, 20syl 17 . . . . 5 (𝜑 → (⟨𝑁, 𝐵⟩ ∈ 𝐹𝑁 ∈ (0..^(♯‘𝐹))))
2216, 21mtod 197 . . . 4 (𝜑 → ¬ ⟨𝑁, 𝐵⟩ ∈ 𝐹)
239, 22jca 511 . . 3 (𝜑 → (𝐹 ∈ Fin ∧ ¬ ⟨𝑁, 𝐵⟩ ∈ 𝐹))
24 hashunsng 14035 . . 3 (⟨𝑁, 𝐵⟩ ∈ V → ((𝐹 ∈ Fin ∧ ¬ ⟨𝑁, 𝐵⟩ ∈ 𝐹) → (♯‘(𝐹 ∪ {⟨𝑁, 𝐵⟩})) = ((♯‘𝐹) + 1)))
254, 23, 24mpsyl 68 . 2 (𝜑 → (♯‘(𝐹 ∪ {⟨𝑁, 𝐵⟩})) = ((♯‘𝐹) + 1))
2610eqcomi 2747 . . . 4 (♯‘𝐹) = 𝑁
2726a1i 11 . . 3 (𝜑 → (♯‘𝐹) = 𝑁)
2827oveq1d 7270 . 2 (𝜑 → ((♯‘𝐹) + 1) = (𝑁 + 1))
293, 25, 283eqtrd 2782 1 (𝜑 → (♯‘𝐻) = (𝑁 + 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cun 3881  wss 3883  {csn 4558  {cpr 4560  cop 4564   class class class wbr 5070  dom cdm 5580  Fun wfun 6412   Fn wfn 6413  cfv 6418  (class class class)co 7255  Fincfn 8691  0cc0 10802  1c1 10803   + caddc 10805  ..^cfzo 13311  chash 13972  Word cword 14145  Vtxcvtx 27269  iEdgciedg 27270  Edgcedg 27320  Walkscwlks 27866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-wlks 27869
This theorem is referenced by:  wlkp1lem8  27950  wlkp1  27951  eupthp1  28481
  Copyright terms: Public domain W3C validator