MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkp1lem2 Structured version   Visualization version   GIF version

Theorem wlkp1lem2 28051
Description: Lemma for wlkp1 28058. (Contributed by AV, 6-Mar-2021.)
Hypotheses
Ref Expression
wlkp1.v 𝑉 = (Vtx‘𝐺)
wlkp1.i 𝐼 = (iEdg‘𝐺)
wlkp1.f (𝜑 → Fun 𝐼)
wlkp1.a (𝜑𝐼 ∈ Fin)
wlkp1.b (𝜑𝐵𝑊)
wlkp1.c (𝜑𝐶𝑉)
wlkp1.d (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
wlkp1.w (𝜑𝐹(Walks‘𝐺)𝑃)
wlkp1.n 𝑁 = (♯‘𝐹)
wlkp1.e (𝜑𝐸 ∈ (Edg‘𝐺))
wlkp1.x (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
wlkp1.u (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
wlkp1.h 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
Assertion
Ref Expression
wlkp1lem2 (𝜑 → (♯‘𝐻) = (𝑁 + 1))

Proof of Theorem wlkp1lem2
StepHypRef Expression
1 wlkp1.h . . . 4 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
21fveq2i 6769 . . 3 (♯‘𝐻) = (♯‘(𝐹 ∪ {⟨𝑁, 𝐵⟩}))
32a1i 11 . 2 (𝜑 → (♯‘𝐻) = (♯‘(𝐹 ∪ {⟨𝑁, 𝐵⟩})))
4 opex 5377 . . 3 𝑁, 𝐵⟩ ∈ V
5 wlkp1.w . . . . 5 (𝜑𝐹(Walks‘𝐺)𝑃)
6 wlkp1.i . . . . . 6 𝐼 = (iEdg‘𝐺)
76wlkf 27991 . . . . 5 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
8 wrdfin 14245 . . . . 5 (𝐹 ∈ Word dom 𝐼𝐹 ∈ Fin)
95, 7, 83syl 18 . . . 4 (𝜑𝐹 ∈ Fin)
10 wlkp1.n . . . . . 6 𝑁 = (♯‘𝐹)
11 fzonel 13411 . . . . . . . 8 ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹))
1211a1i 11 . . . . . . 7 (𝜑 → ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹)))
13 eleq1 2826 . . . . . . . 8 (𝑁 = (♯‘𝐹) → (𝑁 ∈ (0..^(♯‘𝐹)) ↔ (♯‘𝐹) ∈ (0..^(♯‘𝐹))))
1413notbid 318 . . . . . . 7 (𝑁 = (♯‘𝐹) → (¬ 𝑁 ∈ (0..^(♯‘𝐹)) ↔ ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹))))
1512, 14syl5ibr 245 . . . . . 6 (𝑁 = (♯‘𝐹) → (𝜑 → ¬ 𝑁 ∈ (0..^(♯‘𝐹))))
1610, 15ax-mp 5 . . . . 5 (𝜑 → ¬ 𝑁 ∈ (0..^(♯‘𝐹)))
17 wrdfn 14241 . . . . . . 7 (𝐹 ∈ Word dom 𝐼𝐹 Fn (0..^(♯‘𝐹)))
185, 7, 173syl 18 . . . . . 6 (𝜑𝐹 Fn (0..^(♯‘𝐹)))
19 fnop 6534 . . . . . . 7 ((𝐹 Fn (0..^(♯‘𝐹)) ∧ ⟨𝑁, 𝐵⟩ ∈ 𝐹) → 𝑁 ∈ (0..^(♯‘𝐹)))
2019ex 413 . . . . . 6 (𝐹 Fn (0..^(♯‘𝐹)) → (⟨𝑁, 𝐵⟩ ∈ 𝐹𝑁 ∈ (0..^(♯‘𝐹))))
2118, 20syl 17 . . . . 5 (𝜑 → (⟨𝑁, 𝐵⟩ ∈ 𝐹𝑁 ∈ (0..^(♯‘𝐹))))
2216, 21mtod 197 . . . 4 (𝜑 → ¬ ⟨𝑁, 𝐵⟩ ∈ 𝐹)
239, 22jca 512 . . 3 (𝜑 → (𝐹 ∈ Fin ∧ ¬ ⟨𝑁, 𝐵⟩ ∈ 𝐹))
24 hashunsng 14117 . . 3 (⟨𝑁, 𝐵⟩ ∈ V → ((𝐹 ∈ Fin ∧ ¬ ⟨𝑁, 𝐵⟩ ∈ 𝐹) → (♯‘(𝐹 ∪ {⟨𝑁, 𝐵⟩})) = ((♯‘𝐹) + 1)))
254, 23, 24mpsyl 68 . 2 (𝜑 → (♯‘(𝐹 ∪ {⟨𝑁, 𝐵⟩})) = ((♯‘𝐹) + 1))
2610eqcomi 2747 . . . 4 (♯‘𝐹) = 𝑁
2726a1i 11 . . 3 (𝜑 → (♯‘𝐹) = 𝑁)
2827oveq1d 7282 . 2 (𝜑 → ((♯‘𝐹) + 1) = (𝑁 + 1))
293, 25, 283eqtrd 2782 1 (𝜑 → (♯‘𝐻) = (𝑁 + 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3429  cun 3884  wss 3886  {csn 4561  {cpr 4563  cop 4567   class class class wbr 5073  dom cdm 5584  Fun wfun 6420   Fn wfn 6421  cfv 6426  (class class class)co 7267  Fincfn 8720  0cc0 10881  1c1 10882   + caddc 10884  ..^cfzo 13392  chash 14054  Word cword 14227  Vtxcvtx 27376  iEdgciedg 27377  Edgcedg 27427  Walkscwlks 27973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-om 7703  df-1st 7820  df-2nd 7821  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-oadd 8288  df-er 8485  df-map 8604  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-dju 9669  df-card 9707  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-nn 11984  df-n0 12244  df-z 12330  df-uz 12593  df-fz 13250  df-fzo 13393  df-hash 14055  df-word 14228  df-wlks 27976
This theorem is referenced by:  wlkp1lem8  28057  wlkp1  28058  eupthp1  28588
  Copyright terms: Public domain W3C validator