![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkp1lem2 | Structured version Visualization version GIF version |
Description: Lemma for wlkp1 29206. (Contributed by AV, 6-Mar-2021.) |
Ref | Expression |
---|---|
wlkp1.v | β’ π = (VtxβπΊ) |
wlkp1.i | β’ πΌ = (iEdgβπΊ) |
wlkp1.f | β’ (π β Fun πΌ) |
wlkp1.a | β’ (π β πΌ β Fin) |
wlkp1.b | β’ (π β π΅ β π) |
wlkp1.c | β’ (π β πΆ β π) |
wlkp1.d | β’ (π β Β¬ π΅ β dom πΌ) |
wlkp1.w | β’ (π β πΉ(WalksβπΊ)π) |
wlkp1.n | β’ π = (β―βπΉ) |
wlkp1.e | β’ (π β πΈ β (EdgβπΊ)) |
wlkp1.x | β’ (π β {(πβπ), πΆ} β πΈ) |
wlkp1.u | β’ (π β (iEdgβπ) = (πΌ βͺ {β¨π΅, πΈβ©})) |
wlkp1.h | β’ π» = (πΉ βͺ {β¨π, π΅β©}) |
Ref | Expression |
---|---|
wlkp1lem2 | β’ (π β (β―βπ») = (π + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkp1.h | . . . 4 β’ π» = (πΉ βͺ {β¨π, π΅β©}) | |
2 | 1 | fveq2i 6894 | . . 3 β’ (β―βπ») = (β―β(πΉ βͺ {β¨π, π΅β©})) |
3 | 2 | a1i 11 | . 2 β’ (π β (β―βπ») = (β―β(πΉ βͺ {β¨π, π΅β©}))) |
4 | opex 5464 | . . 3 β’ β¨π, π΅β© β V | |
5 | wlkp1.w | . . . . 5 β’ (π β πΉ(WalksβπΊ)π) | |
6 | wlkp1.i | . . . . . 6 β’ πΌ = (iEdgβπΊ) | |
7 | 6 | wlkf 29139 | . . . . 5 β’ (πΉ(WalksβπΊ)π β πΉ β Word dom πΌ) |
8 | wrdfin 14487 | . . . . 5 β’ (πΉ β Word dom πΌ β πΉ β Fin) | |
9 | 5, 7, 8 | 3syl 18 | . . . 4 β’ (π β πΉ β Fin) |
10 | wlkp1.n | . . . . . 6 β’ π = (β―βπΉ) | |
11 | fzonel 13651 | . . . . . . . 8 β’ Β¬ (β―βπΉ) β (0..^(β―βπΉ)) | |
12 | 11 | a1i 11 | . . . . . . 7 β’ (π β Β¬ (β―βπΉ) β (0..^(β―βπΉ))) |
13 | eleq1 2820 | . . . . . . . 8 β’ (π = (β―βπΉ) β (π β (0..^(β―βπΉ)) β (β―βπΉ) β (0..^(β―βπΉ)))) | |
14 | 13 | notbid 318 | . . . . . . 7 β’ (π = (β―βπΉ) β (Β¬ π β (0..^(β―βπΉ)) β Β¬ (β―βπΉ) β (0..^(β―βπΉ)))) |
15 | 12, 14 | imbitrrid 245 | . . . . . 6 β’ (π = (β―βπΉ) β (π β Β¬ π β (0..^(β―βπΉ)))) |
16 | 10, 15 | ax-mp 5 | . . . . 5 β’ (π β Β¬ π β (0..^(β―βπΉ))) |
17 | wrdfn 14483 | . . . . . . 7 β’ (πΉ β Word dom πΌ β πΉ Fn (0..^(β―βπΉ))) | |
18 | 5, 7, 17 | 3syl 18 | . . . . . 6 β’ (π β πΉ Fn (0..^(β―βπΉ))) |
19 | fnop 6658 | . . . . . . 7 β’ ((πΉ Fn (0..^(β―βπΉ)) β§ β¨π, π΅β© β πΉ) β π β (0..^(β―βπΉ))) | |
20 | 19 | ex 412 | . . . . . 6 β’ (πΉ Fn (0..^(β―βπΉ)) β (β¨π, π΅β© β πΉ β π β (0..^(β―βπΉ)))) |
21 | 18, 20 | syl 17 | . . . . 5 β’ (π β (β¨π, π΅β© β πΉ β π β (0..^(β―βπΉ)))) |
22 | 16, 21 | mtod 197 | . . . 4 β’ (π β Β¬ β¨π, π΅β© β πΉ) |
23 | 9, 22 | jca 511 | . . 3 β’ (π β (πΉ β Fin β§ Β¬ β¨π, π΅β© β πΉ)) |
24 | hashunsng 14357 | . . 3 β’ (β¨π, π΅β© β V β ((πΉ β Fin β§ Β¬ β¨π, π΅β© β πΉ) β (β―β(πΉ βͺ {β¨π, π΅β©})) = ((β―βπΉ) + 1))) | |
25 | 4, 23, 24 | mpsyl 68 | . 2 β’ (π β (β―β(πΉ βͺ {β¨π, π΅β©})) = ((β―βπΉ) + 1)) |
26 | 10 | eqcomi 2740 | . . . 4 β’ (β―βπΉ) = π |
27 | 26 | a1i 11 | . . 3 β’ (π β (β―βπΉ) = π) |
28 | 27 | oveq1d 7427 | . 2 β’ (π β ((β―βπΉ) + 1) = (π + 1)) |
29 | 3, 25, 28 | 3eqtrd 2775 | 1 β’ (π β (β―βπ») = (π + 1)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 Vcvv 3473 βͺ cun 3946 β wss 3948 {csn 4628 {cpr 4630 β¨cop 4634 class class class wbr 5148 dom cdm 5676 Fun wfun 6537 Fn wfn 6538 βcfv 6543 (class class class)co 7412 Fincfn 8943 0cc0 11114 1c1 11115 + caddc 11117 ..^cfzo 13632 β―chash 14295 Word cword 14469 Vtxcvtx 28524 iEdgciedg 28525 Edgcedg 28575 Walkscwlks 29121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-oadd 8474 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-dju 9900 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-fzo 13633 df-hash 14296 df-word 14470 df-wlks 29124 |
This theorem is referenced by: wlkp1lem8 29205 wlkp1 29206 eupthp1 29737 |
Copyright terms: Public domain | W3C validator |