| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlkp1lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for wlkp1 29666. (Contributed by AV, 6-Mar-2021.) |
| Ref | Expression |
|---|---|
| wlkp1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| wlkp1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| wlkp1.f | ⊢ (𝜑 → Fun 𝐼) |
| wlkp1.a | ⊢ (𝜑 → 𝐼 ∈ Fin) |
| wlkp1.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| wlkp1.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| wlkp1.d | ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) |
| wlkp1.w | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| wlkp1.n | ⊢ 𝑁 = (♯‘𝐹) |
| wlkp1.e | ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) |
| wlkp1.x | ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) |
| wlkp1.u | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) |
| wlkp1.h | ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) |
| Ref | Expression |
|---|---|
| wlkp1lem2 | ⊢ (𝜑 → (♯‘𝐻) = (𝑁 + 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkp1.h | . . . 4 ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) | |
| 2 | 1 | fveq2i 6884 | . . 3 ⊢ (♯‘𝐻) = (♯‘(𝐹 ∪ {〈𝑁, 𝐵〉})) |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (♯‘𝐻) = (♯‘(𝐹 ∪ {〈𝑁, 𝐵〉}))) |
| 4 | opex 5444 | . . 3 ⊢ 〈𝑁, 𝐵〉 ∈ V | |
| 5 | wlkp1.w | . . . . 5 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | |
| 6 | wlkp1.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 7 | 6 | wlkf 29599 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
| 8 | wrdfin 14555 | . . . . 5 ⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹 ∈ Fin) | |
| 9 | 5, 7, 8 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ Fin) |
| 10 | wlkp1.n | . . . . . 6 ⊢ 𝑁 = (♯‘𝐹) | |
| 11 | fzonel 13695 | . . . . . . . 8 ⊢ ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹)) | |
| 12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹))) |
| 13 | eleq1 2823 | . . . . . . . 8 ⊢ (𝑁 = (♯‘𝐹) → (𝑁 ∈ (0..^(♯‘𝐹)) ↔ (♯‘𝐹) ∈ (0..^(♯‘𝐹)))) | |
| 14 | 13 | notbid 318 | . . . . . . 7 ⊢ (𝑁 = (♯‘𝐹) → (¬ 𝑁 ∈ (0..^(♯‘𝐹)) ↔ ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹)))) |
| 15 | 12, 14 | imbitrrid 246 | . . . . . 6 ⊢ (𝑁 = (♯‘𝐹) → (𝜑 → ¬ 𝑁 ∈ (0..^(♯‘𝐹)))) |
| 16 | 10, 15 | ax-mp 5 | . . . . 5 ⊢ (𝜑 → ¬ 𝑁 ∈ (0..^(♯‘𝐹))) |
| 17 | wrdfn 14551 | . . . . . 6 ⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹 Fn (0..^(♯‘𝐹))) | |
| 18 | fnop 6652 | . . . . . . 7 ⊢ ((𝐹 Fn (0..^(♯‘𝐹)) ∧ 〈𝑁, 𝐵〉 ∈ 𝐹) → 𝑁 ∈ (0..^(♯‘𝐹))) | |
| 19 | 18 | ex 412 | . . . . . 6 ⊢ (𝐹 Fn (0..^(♯‘𝐹)) → (〈𝑁, 𝐵〉 ∈ 𝐹 → 𝑁 ∈ (0..^(♯‘𝐹)))) |
| 20 | 5, 7, 17, 19 | 4syl 19 | . . . . 5 ⊢ (𝜑 → (〈𝑁, 𝐵〉 ∈ 𝐹 → 𝑁 ∈ (0..^(♯‘𝐹)))) |
| 21 | 16, 20 | mtod 198 | . . . 4 ⊢ (𝜑 → ¬ 〈𝑁, 𝐵〉 ∈ 𝐹) |
| 22 | 9, 21 | jca 511 | . . 3 ⊢ (𝜑 → (𝐹 ∈ Fin ∧ ¬ 〈𝑁, 𝐵〉 ∈ 𝐹)) |
| 23 | hashunsng 14415 | . . 3 ⊢ (〈𝑁, 𝐵〉 ∈ V → ((𝐹 ∈ Fin ∧ ¬ 〈𝑁, 𝐵〉 ∈ 𝐹) → (♯‘(𝐹 ∪ {〈𝑁, 𝐵〉})) = ((♯‘𝐹) + 1))) | |
| 24 | 4, 22, 23 | mpsyl 68 | . 2 ⊢ (𝜑 → (♯‘(𝐹 ∪ {〈𝑁, 𝐵〉})) = ((♯‘𝐹) + 1)) |
| 25 | 10 | eqcomi 2745 | . . . 4 ⊢ (♯‘𝐹) = 𝑁 |
| 26 | 25 | a1i 11 | . . 3 ⊢ (𝜑 → (♯‘𝐹) = 𝑁) |
| 27 | 26 | oveq1d 7425 | . 2 ⊢ (𝜑 → ((♯‘𝐹) + 1) = (𝑁 + 1)) |
| 28 | 3, 24, 27 | 3eqtrd 2775 | 1 ⊢ (𝜑 → (♯‘𝐻) = (𝑁 + 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∪ cun 3929 ⊆ wss 3931 {csn 4606 {cpr 4608 〈cop 4612 class class class wbr 5124 dom cdm 5659 Fun wfun 6530 Fn wfn 6531 ‘cfv 6536 (class class class)co 7410 Fincfn 8964 0cc0 11134 1c1 11135 + caddc 11137 ..^cfzo 13676 ♯chash 14353 Word cword 14536 Vtxcvtx 28980 iEdgciedg 28981 Edgcedg 29031 Walkscwlks 29581 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9920 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-hash 14354 df-word 14537 df-wlks 29584 |
| This theorem is referenced by: wlkp1lem8 29665 wlkp1 29666 eupthp1 30202 |
| Copyright terms: Public domain | W3C validator |