Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wlkp1lem2 | Structured version Visualization version GIF version |
Description: Lemma for wlkp1 28058. (Contributed by AV, 6-Mar-2021.) |
Ref | Expression |
---|---|
wlkp1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
wlkp1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
wlkp1.f | ⊢ (𝜑 → Fun 𝐼) |
wlkp1.a | ⊢ (𝜑 → 𝐼 ∈ Fin) |
wlkp1.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
wlkp1.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
wlkp1.d | ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) |
wlkp1.w | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
wlkp1.n | ⊢ 𝑁 = (♯‘𝐹) |
wlkp1.e | ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) |
wlkp1.x | ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) |
wlkp1.u | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) |
wlkp1.h | ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) |
Ref | Expression |
---|---|
wlkp1lem2 | ⊢ (𝜑 → (♯‘𝐻) = (𝑁 + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkp1.h | . . . 4 ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) | |
2 | 1 | fveq2i 6769 | . . 3 ⊢ (♯‘𝐻) = (♯‘(𝐹 ∪ {〈𝑁, 𝐵〉})) |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (♯‘𝐻) = (♯‘(𝐹 ∪ {〈𝑁, 𝐵〉}))) |
4 | opex 5377 | . . 3 ⊢ 〈𝑁, 𝐵〉 ∈ V | |
5 | wlkp1.w | . . . . 5 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | |
6 | wlkp1.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
7 | 6 | wlkf 27991 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
8 | wrdfin 14245 | . . . . 5 ⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹 ∈ Fin) | |
9 | 5, 7, 8 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ Fin) |
10 | wlkp1.n | . . . . . 6 ⊢ 𝑁 = (♯‘𝐹) | |
11 | fzonel 13411 | . . . . . . . 8 ⊢ ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹)) | |
12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹))) |
13 | eleq1 2826 | . . . . . . . 8 ⊢ (𝑁 = (♯‘𝐹) → (𝑁 ∈ (0..^(♯‘𝐹)) ↔ (♯‘𝐹) ∈ (0..^(♯‘𝐹)))) | |
14 | 13 | notbid 318 | . . . . . . 7 ⊢ (𝑁 = (♯‘𝐹) → (¬ 𝑁 ∈ (0..^(♯‘𝐹)) ↔ ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹)))) |
15 | 12, 14 | syl5ibr 245 | . . . . . 6 ⊢ (𝑁 = (♯‘𝐹) → (𝜑 → ¬ 𝑁 ∈ (0..^(♯‘𝐹)))) |
16 | 10, 15 | ax-mp 5 | . . . . 5 ⊢ (𝜑 → ¬ 𝑁 ∈ (0..^(♯‘𝐹))) |
17 | wrdfn 14241 | . . . . . . 7 ⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹 Fn (0..^(♯‘𝐹))) | |
18 | 5, 7, 17 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐹 Fn (0..^(♯‘𝐹))) |
19 | fnop 6534 | . . . . . . 7 ⊢ ((𝐹 Fn (0..^(♯‘𝐹)) ∧ 〈𝑁, 𝐵〉 ∈ 𝐹) → 𝑁 ∈ (0..^(♯‘𝐹))) | |
20 | 19 | ex 413 | . . . . . 6 ⊢ (𝐹 Fn (0..^(♯‘𝐹)) → (〈𝑁, 𝐵〉 ∈ 𝐹 → 𝑁 ∈ (0..^(♯‘𝐹)))) |
21 | 18, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → (〈𝑁, 𝐵〉 ∈ 𝐹 → 𝑁 ∈ (0..^(♯‘𝐹)))) |
22 | 16, 21 | mtod 197 | . . . 4 ⊢ (𝜑 → ¬ 〈𝑁, 𝐵〉 ∈ 𝐹) |
23 | 9, 22 | jca 512 | . . 3 ⊢ (𝜑 → (𝐹 ∈ Fin ∧ ¬ 〈𝑁, 𝐵〉 ∈ 𝐹)) |
24 | hashunsng 14117 | . . 3 ⊢ (〈𝑁, 𝐵〉 ∈ V → ((𝐹 ∈ Fin ∧ ¬ 〈𝑁, 𝐵〉 ∈ 𝐹) → (♯‘(𝐹 ∪ {〈𝑁, 𝐵〉})) = ((♯‘𝐹) + 1))) | |
25 | 4, 23, 24 | mpsyl 68 | . 2 ⊢ (𝜑 → (♯‘(𝐹 ∪ {〈𝑁, 𝐵〉})) = ((♯‘𝐹) + 1)) |
26 | 10 | eqcomi 2747 | . . . 4 ⊢ (♯‘𝐹) = 𝑁 |
27 | 26 | a1i 11 | . . 3 ⊢ (𝜑 → (♯‘𝐹) = 𝑁) |
28 | 27 | oveq1d 7282 | . 2 ⊢ (𝜑 → ((♯‘𝐹) + 1) = (𝑁 + 1)) |
29 | 3, 25, 28 | 3eqtrd 2782 | 1 ⊢ (𝜑 → (♯‘𝐻) = (𝑁 + 1)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3429 ∪ cun 3884 ⊆ wss 3886 {csn 4561 {cpr 4563 〈cop 4567 class class class wbr 5073 dom cdm 5584 Fun wfun 6420 Fn wfn 6421 ‘cfv 6426 (class class class)co 7267 Fincfn 8720 0cc0 10881 1c1 10882 + caddc 10884 ..^cfzo 13392 ♯chash 14054 Word cword 14227 Vtxcvtx 27376 iEdgciedg 27377 Edgcedg 27427 Walkscwlks 27973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-oadd 8288 df-er 8485 df-map 8604 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-dju 9669 df-card 9707 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-nn 11984 df-n0 12244 df-z 12330 df-uz 12593 df-fz 13250 df-fzo 13393 df-hash 14055 df-word 14228 df-wlks 27976 |
This theorem is referenced by: wlkp1lem8 28057 wlkp1 28058 eupthp1 28588 |
Copyright terms: Public domain | W3C validator |