MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkp1lem2 Structured version   Visualization version   GIF version

Theorem wlkp1lem2 29653
Description: Lemma for wlkp1 29660. (Contributed by AV, 6-Mar-2021.)
Hypotheses
Ref Expression
wlkp1.v 𝑉 = (Vtx‘𝐺)
wlkp1.i 𝐼 = (iEdg‘𝐺)
wlkp1.f (𝜑 → Fun 𝐼)
wlkp1.a (𝜑𝐼 ∈ Fin)
wlkp1.b (𝜑𝐵𝑊)
wlkp1.c (𝜑𝐶𝑉)
wlkp1.d (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
wlkp1.w (𝜑𝐹(Walks‘𝐺)𝑃)
wlkp1.n 𝑁 = (♯‘𝐹)
wlkp1.e (𝜑𝐸 ∈ (Edg‘𝐺))
wlkp1.x (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
wlkp1.u (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
wlkp1.h 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
Assertion
Ref Expression
wlkp1lem2 (𝜑 → (♯‘𝐻) = (𝑁 + 1))

Proof of Theorem wlkp1lem2
StepHypRef Expression
1 wlkp1.h . . . 4 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
21fveq2i 6831 . . 3 (♯‘𝐻) = (♯‘(𝐹 ∪ {⟨𝑁, 𝐵⟩}))
32a1i 11 . 2 (𝜑 → (♯‘𝐻) = (♯‘(𝐹 ∪ {⟨𝑁, 𝐵⟩})))
4 opex 5407 . . 3 𝑁, 𝐵⟩ ∈ V
5 wlkp1.w . . . . 5 (𝜑𝐹(Walks‘𝐺)𝑃)
6 wlkp1.i . . . . . 6 𝐼 = (iEdg‘𝐺)
76wlkf 29595 . . . . 5 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
8 wrdfin 14441 . . . . 5 (𝐹 ∈ Word dom 𝐼𝐹 ∈ Fin)
95, 7, 83syl 18 . . . 4 (𝜑𝐹 ∈ Fin)
10 wlkp1.n . . . . . 6 𝑁 = (♯‘𝐹)
11 fzonel 13575 . . . . . . . 8 ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹))
1211a1i 11 . . . . . . 7 (𝜑 → ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹)))
13 eleq1 2821 . . . . . . . 8 (𝑁 = (♯‘𝐹) → (𝑁 ∈ (0..^(♯‘𝐹)) ↔ (♯‘𝐹) ∈ (0..^(♯‘𝐹))))
1413notbid 318 . . . . . . 7 (𝑁 = (♯‘𝐹) → (¬ 𝑁 ∈ (0..^(♯‘𝐹)) ↔ ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹))))
1512, 14imbitrrid 246 . . . . . 6 (𝑁 = (♯‘𝐹) → (𝜑 → ¬ 𝑁 ∈ (0..^(♯‘𝐹))))
1610, 15ax-mp 5 . . . . 5 (𝜑 → ¬ 𝑁 ∈ (0..^(♯‘𝐹)))
17 wrdfn 14437 . . . . . 6 (𝐹 ∈ Word dom 𝐼𝐹 Fn (0..^(♯‘𝐹)))
18 fnop 6595 . . . . . . 7 ((𝐹 Fn (0..^(♯‘𝐹)) ∧ ⟨𝑁, 𝐵⟩ ∈ 𝐹) → 𝑁 ∈ (0..^(♯‘𝐹)))
1918ex 412 . . . . . 6 (𝐹 Fn (0..^(♯‘𝐹)) → (⟨𝑁, 𝐵⟩ ∈ 𝐹𝑁 ∈ (0..^(♯‘𝐹))))
205, 7, 17, 194syl 19 . . . . 5 (𝜑 → (⟨𝑁, 𝐵⟩ ∈ 𝐹𝑁 ∈ (0..^(♯‘𝐹))))
2116, 20mtod 198 . . . 4 (𝜑 → ¬ ⟨𝑁, 𝐵⟩ ∈ 𝐹)
229, 21jca 511 . . 3 (𝜑 → (𝐹 ∈ Fin ∧ ¬ ⟨𝑁, 𝐵⟩ ∈ 𝐹))
23 hashunsng 14301 . . 3 (⟨𝑁, 𝐵⟩ ∈ V → ((𝐹 ∈ Fin ∧ ¬ ⟨𝑁, 𝐵⟩ ∈ 𝐹) → (♯‘(𝐹 ∪ {⟨𝑁, 𝐵⟩})) = ((♯‘𝐹) + 1)))
244, 22, 23mpsyl 68 . 2 (𝜑 → (♯‘(𝐹 ∪ {⟨𝑁, 𝐵⟩})) = ((♯‘𝐹) + 1))
2510eqcomi 2742 . . . 4 (♯‘𝐹) = 𝑁
2625a1i 11 . . 3 (𝜑 → (♯‘𝐹) = 𝑁)
2726oveq1d 7367 . 2 (𝜑 → ((♯‘𝐹) + 1) = (𝑁 + 1))
283, 24, 273eqtrd 2772 1 (𝜑 → (♯‘𝐻) = (𝑁 + 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  cun 3896  wss 3898  {csn 4575  {cpr 4577  cop 4581   class class class wbr 5093  dom cdm 5619  Fun wfun 6480   Fn wfn 6481  cfv 6486  (class class class)co 7352  Fincfn 8875  0cc0 11013  1c1 11014   + caddc 11016  ..^cfzo 13556  chash 14239  Word cword 14422  Vtxcvtx 28976  iEdgciedg 28977  Edgcedg 29027  Walkscwlks 29577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-oadd 8395  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-dju 9801  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-hash 14240  df-word 14423  df-wlks 29580
This theorem is referenced by:  wlkp1lem8  29659  wlkp1  29660  eupthp1  30198
  Copyright terms: Public domain W3C validator