![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkp1lem2 | Structured version Visualization version GIF version |
Description: Lemma for wlkp1 29567. (Contributed by AV, 6-Mar-2021.) |
Ref | Expression |
---|---|
wlkp1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
wlkp1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
wlkp1.f | ⊢ (𝜑 → Fun 𝐼) |
wlkp1.a | ⊢ (𝜑 → 𝐼 ∈ Fin) |
wlkp1.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
wlkp1.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
wlkp1.d | ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) |
wlkp1.w | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
wlkp1.n | ⊢ 𝑁 = (♯‘𝐹) |
wlkp1.e | ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) |
wlkp1.x | ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) |
wlkp1.u | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) |
wlkp1.h | ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) |
Ref | Expression |
---|---|
wlkp1lem2 | ⊢ (𝜑 → (♯‘𝐻) = (𝑁 + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkp1.h | . . . 4 ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) | |
2 | 1 | fveq2i 6899 | . . 3 ⊢ (♯‘𝐻) = (♯‘(𝐹 ∪ {〈𝑁, 𝐵〉})) |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (♯‘𝐻) = (♯‘(𝐹 ∪ {〈𝑁, 𝐵〉}))) |
4 | opex 5466 | . . 3 ⊢ 〈𝑁, 𝐵〉 ∈ V | |
5 | wlkp1.w | . . . . 5 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | |
6 | wlkp1.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
7 | 6 | wlkf 29500 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
8 | wrdfin 14518 | . . . . 5 ⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹 ∈ Fin) | |
9 | 5, 7, 8 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ Fin) |
10 | wlkp1.n | . . . . . 6 ⊢ 𝑁 = (♯‘𝐹) | |
11 | fzonel 13681 | . . . . . . . 8 ⊢ ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹)) | |
12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹))) |
13 | eleq1 2813 | . . . . . . . 8 ⊢ (𝑁 = (♯‘𝐹) → (𝑁 ∈ (0..^(♯‘𝐹)) ↔ (♯‘𝐹) ∈ (0..^(♯‘𝐹)))) | |
14 | 13 | notbid 317 | . . . . . . 7 ⊢ (𝑁 = (♯‘𝐹) → (¬ 𝑁 ∈ (0..^(♯‘𝐹)) ↔ ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹)))) |
15 | 12, 14 | imbitrrid 245 | . . . . . 6 ⊢ (𝑁 = (♯‘𝐹) → (𝜑 → ¬ 𝑁 ∈ (0..^(♯‘𝐹)))) |
16 | 10, 15 | ax-mp 5 | . . . . 5 ⊢ (𝜑 → ¬ 𝑁 ∈ (0..^(♯‘𝐹))) |
17 | wrdfn 14514 | . . . . . 6 ⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹 Fn (0..^(♯‘𝐹))) | |
18 | fnop 6664 | . . . . . . 7 ⊢ ((𝐹 Fn (0..^(♯‘𝐹)) ∧ 〈𝑁, 𝐵〉 ∈ 𝐹) → 𝑁 ∈ (0..^(♯‘𝐹))) | |
19 | 18 | ex 411 | . . . . . 6 ⊢ (𝐹 Fn (0..^(♯‘𝐹)) → (〈𝑁, 𝐵〉 ∈ 𝐹 → 𝑁 ∈ (0..^(♯‘𝐹)))) |
20 | 5, 7, 17, 19 | 4syl 19 | . . . . 5 ⊢ (𝜑 → (〈𝑁, 𝐵〉 ∈ 𝐹 → 𝑁 ∈ (0..^(♯‘𝐹)))) |
21 | 16, 20 | mtod 197 | . . . 4 ⊢ (𝜑 → ¬ 〈𝑁, 𝐵〉 ∈ 𝐹) |
22 | 9, 21 | jca 510 | . . 3 ⊢ (𝜑 → (𝐹 ∈ Fin ∧ ¬ 〈𝑁, 𝐵〉 ∈ 𝐹)) |
23 | hashunsng 14387 | . . 3 ⊢ (〈𝑁, 𝐵〉 ∈ V → ((𝐹 ∈ Fin ∧ ¬ 〈𝑁, 𝐵〉 ∈ 𝐹) → (♯‘(𝐹 ∪ {〈𝑁, 𝐵〉})) = ((♯‘𝐹) + 1))) | |
24 | 4, 22, 23 | mpsyl 68 | . 2 ⊢ (𝜑 → (♯‘(𝐹 ∪ {〈𝑁, 𝐵〉})) = ((♯‘𝐹) + 1)) |
25 | 10 | eqcomi 2734 | . . . 4 ⊢ (♯‘𝐹) = 𝑁 |
26 | 25 | a1i 11 | . . 3 ⊢ (𝜑 → (♯‘𝐹) = 𝑁) |
27 | 26 | oveq1d 7434 | . 2 ⊢ (𝜑 → ((♯‘𝐹) + 1) = (𝑁 + 1)) |
28 | 3, 24, 27 | 3eqtrd 2769 | 1 ⊢ (𝜑 → (♯‘𝐻) = (𝑁 + 1)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ∪ cun 3942 ⊆ wss 3944 {csn 4630 {cpr 4632 〈cop 4636 class class class wbr 5149 dom cdm 5678 Fun wfun 6543 Fn wfn 6544 ‘cfv 6549 (class class class)co 7419 Fincfn 8964 0cc0 11140 1c1 11141 + caddc 11143 ..^cfzo 13662 ♯chash 14325 Word cword 14500 Vtxcvtx 28881 iEdgciedg 28882 Edgcedg 28932 Walkscwlks 29482 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ifp 1061 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-oadd 8491 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9926 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-n0 12506 df-z 12592 df-uz 12856 df-fz 13520 df-fzo 13663 df-hash 14326 df-word 14501 df-wlks 29485 |
This theorem is referenced by: wlkp1lem8 29566 wlkp1 29567 eupthp1 30098 |
Copyright terms: Public domain | W3C validator |