![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fresin2 | Structured version Visualization version GIF version |
Description: Restriction of a function with respect to the intersection with its domain. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fresin2 | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ (𝐶 ∩ 𝐴)) = (𝐹 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdm 6726 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
2 | 1 | eqcomd 2737 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐴 = dom 𝐹) |
3 | 2 | ineq2d 4212 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ dom 𝐹)) |
4 | 3 | reseq2d 5981 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ (𝐶 ∩ 𝐴)) = (𝐹 ↾ (𝐶 ∩ dom 𝐹))) |
5 | frel 6722 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) | |
6 | resindm 6030 | . . 3 ⊢ (Rel 𝐹 → (𝐹 ↾ (𝐶 ∩ dom 𝐹)) = (𝐹 ↾ 𝐶)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ (𝐶 ∩ dom 𝐹)) = (𝐹 ↾ 𝐶)) |
8 | 4, 7 | eqtrd 2771 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ (𝐶 ∩ 𝐴)) = (𝐹 ↾ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∩ cin 3947 dom cdm 5676 ↾ cres 5678 Rel wrel 5681 ⟶wf 6539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-dm 5686 df-res 5688 df-fun 6545 df-fn 6546 df-f 6547 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |