Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fresin2 Structured version   Visualization version   GIF version

Theorem fresin2 44332
Description: Restriction of a function with respect to the intersection with its domain. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
fresin2 (𝐹:𝐴𝐵 → (𝐹 ↾ (𝐶𝐴)) = (𝐹𝐶))

Proof of Theorem fresin2
StepHypRef Expression
1 fdm 6726 . . . . 5 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
21eqcomd 2737 . . . 4 (𝐹:𝐴𝐵𝐴 = dom 𝐹)
32ineq2d 4212 . . 3 (𝐹:𝐴𝐵 → (𝐶𝐴) = (𝐶 ∩ dom 𝐹))
43reseq2d 5981 . 2 (𝐹:𝐴𝐵 → (𝐹 ↾ (𝐶𝐴)) = (𝐹 ↾ (𝐶 ∩ dom 𝐹)))
5 frel 6722 . . 3 (𝐹:𝐴𝐵 → Rel 𝐹)
6 resindm 6030 . . 3 (Rel 𝐹 → (𝐹 ↾ (𝐶 ∩ dom 𝐹)) = (𝐹𝐶))
75, 6syl 17 . 2 (𝐹:𝐴𝐵 → (𝐹 ↾ (𝐶 ∩ dom 𝐹)) = (𝐹𝐶))
84, 7eqtrd 2771 1 (𝐹:𝐴𝐵 → (𝐹 ↾ (𝐶𝐴)) = (𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cin 3947  dom cdm 5676  cres 5678  Rel wrel 5681  wf 6539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-dm 5686  df-res 5688  df-fun 6545  df-fn 6546  df-f 6547
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator