Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fresin2 | Structured version Visualization version GIF version |
Description: Restriction of a function with respect to the intersection with its domain. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fresin2 | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ (𝐶 ∩ 𝐴)) = (𝐹 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdm 6609 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
2 | 1 | eqcomd 2744 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐴 = dom 𝐹) |
3 | 2 | ineq2d 4146 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ dom 𝐹)) |
4 | 3 | reseq2d 5891 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ (𝐶 ∩ 𝐴)) = (𝐹 ↾ (𝐶 ∩ dom 𝐹))) |
5 | frel 6605 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) | |
6 | resindm 5940 | . . 3 ⊢ (Rel 𝐹 → (𝐹 ↾ (𝐶 ∩ dom 𝐹)) = (𝐹 ↾ 𝐶)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ (𝐶 ∩ dom 𝐹)) = (𝐹 ↾ 𝐶)) |
8 | 4, 7 | eqtrd 2778 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ (𝐶 ∩ 𝐴)) = (𝐹 ↾ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∩ cin 3886 dom cdm 5589 ↾ cres 5591 Rel wrel 5594 ⟶wf 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-dm 5599 df-res 5601 df-fun 6435 df-fn 6436 df-f 6437 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |