| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fresin2 | Structured version Visualization version GIF version | ||
| Description: Restriction of a function with respect to the intersection with its domain. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fresin2 | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ (𝐶 ∩ 𝐴)) = (𝐹 ↾ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdm 6699 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 2 | 1 | eqcomd 2736 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐴 = dom 𝐹) |
| 3 | 2 | ineq2d 4185 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ dom 𝐹)) |
| 4 | 3 | reseq2d 5952 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ (𝐶 ∩ 𝐴)) = (𝐹 ↾ (𝐶 ∩ dom 𝐹))) |
| 5 | frel 6695 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) | |
| 6 | resindm 6003 | . . 3 ⊢ (Rel 𝐹 → (𝐹 ↾ (𝐶 ∩ dom 𝐹)) = (𝐹 ↾ 𝐶)) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ (𝐶 ∩ dom 𝐹)) = (𝐹 ↾ 𝐶)) |
| 8 | 4, 7 | eqtrd 2765 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ (𝐶 ∩ 𝐴)) = (𝐹 ↾ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3915 dom cdm 5640 ↾ cres 5642 Rel wrel 5645 ⟶wf 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-xp 5646 df-rel 5647 df-dm 5650 df-res 5652 df-fun 6515 df-fn 6516 df-f 6517 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |