Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fresin2 Structured version   Visualization version   GIF version

Theorem fresin2 42708
Description: Restriction of a function with respect to the intersection with its domain. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
fresin2 (𝐹:𝐴𝐵 → (𝐹 ↾ (𝐶𝐴)) = (𝐹𝐶))

Proof of Theorem fresin2
StepHypRef Expression
1 fdm 6609 . . . . 5 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
21eqcomd 2744 . . . 4 (𝐹:𝐴𝐵𝐴 = dom 𝐹)
32ineq2d 4146 . . 3 (𝐹:𝐴𝐵 → (𝐶𝐴) = (𝐶 ∩ dom 𝐹))
43reseq2d 5891 . 2 (𝐹:𝐴𝐵 → (𝐹 ↾ (𝐶𝐴)) = (𝐹 ↾ (𝐶 ∩ dom 𝐹)))
5 frel 6605 . . 3 (𝐹:𝐴𝐵 → Rel 𝐹)
6 resindm 5940 . . 3 (Rel 𝐹 → (𝐹 ↾ (𝐶 ∩ dom 𝐹)) = (𝐹𝐶))
75, 6syl 17 . 2 (𝐹:𝐴𝐵 → (𝐹 ↾ (𝐶 ∩ dom 𝐹)) = (𝐹𝐶))
84, 7eqtrd 2778 1 (𝐹:𝐴𝐵 → (𝐹 ↾ (𝐶𝐴)) = (𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cin 3886  dom cdm 5589  cres 5591  Rel wrel 5594  wf 6429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-dm 5599  df-res 5601  df-fun 6435  df-fn 6436  df-f 6437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator