Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fresin2 Structured version   Visualization version   GIF version

Theorem fresin2 45215
Description: Restriction of a function with respect to the intersection with its domain. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
fresin2 (𝐹:𝐴𝐵 → (𝐹 ↾ (𝐶𝐴)) = (𝐹𝐶))

Proof of Theorem fresin2
StepHypRef Expression
1 fdm 6660 . . . . 5 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
21eqcomd 2737 . . . 4 (𝐹:𝐴𝐵𝐴 = dom 𝐹)
32ineq2d 4170 . . 3 (𝐹:𝐴𝐵 → (𝐶𝐴) = (𝐶 ∩ dom 𝐹))
43reseq2d 5928 . 2 (𝐹:𝐴𝐵 → (𝐹 ↾ (𝐶𝐴)) = (𝐹 ↾ (𝐶 ∩ dom 𝐹)))
5 frel 6656 . . 3 (𝐹:𝐴𝐵 → Rel 𝐹)
6 resindm 5979 . . 3 (Rel 𝐹 → (𝐹 ↾ (𝐶 ∩ dom 𝐹)) = (𝐹𝐶))
75, 6syl 17 . 2 (𝐹:𝐴𝐵 → (𝐹 ↾ (𝐶 ∩ dom 𝐹)) = (𝐹𝐶))
84, 7eqtrd 2766 1 (𝐹:𝐴𝐵 → (𝐹 ↾ (𝐶𝐴)) = (𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cin 3901  dom cdm 5616  cres 5618  Rel wrel 5621  wf 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-dm 5626  df-res 5628  df-fun 6483  df-fn 6484  df-f 6485
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator