![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fresin2 | Structured version Visualization version GIF version |
Description: Restriction of a function with respect to the intersection with its domain. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fresin2 | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ (𝐶 ∩ 𝐴)) = (𝐹 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdm 6753 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
2 | 1 | eqcomd 2743 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐴 = dom 𝐹) |
3 | 2 | ineq2d 4231 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ dom 𝐹)) |
4 | 3 | reseq2d 6004 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ (𝐶 ∩ 𝐴)) = (𝐹 ↾ (𝐶 ∩ dom 𝐹))) |
5 | frel 6749 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) | |
6 | resindm 6055 | . . 3 ⊢ (Rel 𝐹 → (𝐹 ↾ (𝐶 ∩ dom 𝐹)) = (𝐹 ↾ 𝐶)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ (𝐶 ∩ dom 𝐹)) = (𝐹 ↾ 𝐶)) |
8 | 4, 7 | eqtrd 2777 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ (𝐶 ∩ 𝐴)) = (𝐹 ↾ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∩ cin 3965 dom cdm 5693 ↾ cres 5695 Rel wrel 5698 ⟶wf 6565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-xp 5699 df-rel 5700 df-dm 5703 df-res 5705 df-fun 6571 df-fn 6572 df-f 6573 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |