Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptfi Structured version   Visualization version   GIF version

Theorem rnmptfi 43852
Description: The range of a function with finite domain is finite. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
rnmptfi.a 𝐴 = (𝑥𝐵𝐶)
Assertion
Ref Expression
rnmptfi (𝐵 ∈ Fin → ran 𝐴 ∈ Fin)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem rnmptfi
StepHypRef Expression
1 rnmptfi.a . . 3 𝐴 = (𝑥𝐵𝐶)
2 mptfi 9347 . . 3 (𝐵 ∈ Fin → (𝑥𝐵𝐶) ∈ Fin)
31, 2eqeltrid 2837 . 2 (𝐵 ∈ Fin → 𝐴 ∈ Fin)
4 rnfi 9331 . 2 (𝐴 ∈ Fin → ran 𝐴 ∈ Fin)
53, 4syl 17 1 (𝐵 ∈ Fin → ran 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  cmpt 5230  ran crn 5676  Fincfn 8935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-om 7852  df-1st 7971  df-2nd 7972  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-fin 8939
This theorem is referenced by:  fisupclrnmpt  44094  stoweidlem35  44737  fourierdlem50  44858  fourierdlem70  44878  fourierdlem71  44879  fourierdlem76  44884  fourierdlem80  44888  fourierdlem103  44911  fourierdlem104  44912  ioorrnopnlem  45006  hoidmvlelem2  45298  iunhoiioolem  45377  vonioolem1  45382
  Copyright terms: Public domain W3C validator