Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptfi Structured version   Visualization version   GIF version

Theorem rnmptfi 45137
Description: The range of a function with finite domain is finite. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
rnmptfi.a 𝐴 = (𝑥𝐵𝐶)
Assertion
Ref Expression
rnmptfi (𝐵 ∈ Fin → ran 𝐴 ∈ Fin)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem rnmptfi
StepHypRef Expression
1 rnmptfi.a . . 3 𝐴 = (𝑥𝐵𝐶)
2 mptfi 9320 . . 3 (𝐵 ∈ Fin → (𝑥𝐵𝐶) ∈ Fin)
31, 2eqeltrid 2833 . 2 (𝐵 ∈ Fin → 𝐴 ∈ Fin)
4 rnfi 9309 . 2 (𝐴 ∈ Fin → ran 𝐴 ∈ Fin)
53, 4syl 17 1 (𝐵 ∈ Fin → ran 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cmpt 5196  ran crn 5647  Fincfn 8922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-om 7851  df-1st 7977  df-2nd 7978  df-1o 8443  df-en 8923  df-dom 8924  df-fin 8926
This theorem is referenced by:  fisupclrnmpt  45367  stoweidlem35  46006  fourierdlem50  46127  fourierdlem70  46147  fourierdlem71  46148  fourierdlem76  46153  fourierdlem80  46157  fourierdlem103  46180  fourierdlem104  46181  ioorrnopnlem  46275  hoidmvlelem2  46567  iunhoiioolem  46646  vonioolem1  46651
  Copyright terms: Public domain W3C validator