![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmptfi | Structured version Visualization version GIF version |
Description: The range of a function with finite domain is finite. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
rnmptfi.a | ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
rnmptfi | ⊢ (𝐵 ∈ Fin → ran 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmptfi.a | . . 3 ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
2 | mptfi 9334 | . . 3 ⊢ (𝐵 ∈ Fin → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ Fin) | |
3 | 1, 2 | eqeltrid 2836 | . 2 ⊢ (𝐵 ∈ Fin → 𝐴 ∈ Fin) |
4 | rnfi 9318 | . 2 ⊢ (𝐴 ∈ Fin → ran 𝐴 ∈ Fin) | |
5 | 3, 4 | syl 17 | 1 ⊢ (𝐵 ∈ Fin → ran 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ↦ cmpt 5224 ran crn 5670 Fincfn 8922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-om 7839 df-1st 7957 df-2nd 7958 df-1o 8448 df-er 8686 df-en 8923 df-dom 8924 df-fin 8926 |
This theorem is referenced by: fisupclrnmpt 43879 stoweidlem35 44522 fourierdlem50 44643 fourierdlem70 44663 fourierdlem71 44664 fourierdlem76 44669 fourierdlem80 44673 fourierdlem103 44696 fourierdlem104 44697 ioorrnopnlem 44791 hoidmvlelem2 45083 iunhoiioolem 45162 vonioolem1 45167 |
Copyright terms: Public domain | W3C validator |