Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > funbreq | Structured version Visualization version GIF version |
Description: An equality condition for functions. (Contributed by Scott Fenton, 18-Feb-2013.) |
Ref | Expression |
---|---|
funbreq.1 | ⊢ 𝐴 ∈ V |
funbreq.2 | ⊢ 𝐵 ∈ V |
funbreq.3 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
funbreq | ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐴𝐹𝐶 ↔ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funbreq.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | funbreq.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | funbreq.3 | . . . 4 ⊢ 𝐶 ∈ V | |
4 | 1, 2, 3 | fununiq 33743 | . . 3 ⊢ (Fun 𝐹 → ((𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶) → 𝐵 = 𝐶)) |
5 | 4 | expdimp 453 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐴𝐹𝐶 → 𝐵 = 𝐶)) |
6 | breq2 5078 | . . . 4 ⊢ (𝐵 = 𝐶 → (𝐴𝐹𝐵 ↔ 𝐴𝐹𝐶)) | |
7 | 6 | biimpcd 248 | . . 3 ⊢ (𝐴𝐹𝐵 → (𝐵 = 𝐶 → 𝐴𝐹𝐶)) |
8 | 7 | adantl 482 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐵 = 𝐶 → 𝐴𝐹𝐶)) |
9 | 5, 8 | impbid 211 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐴𝐹𝐶 ↔ 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 class class class wbr 5074 Fun wfun 6427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-fun 6435 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |