![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funbreq | Structured version Visualization version GIF version |
Description: An equality condition for functions. (Contributed by Scott Fenton, 18-Feb-2013.) |
Ref | Expression |
---|---|
funbreq.1 | ⊢ 𝐴 ∈ V |
funbreq.2 | ⊢ 𝐵 ∈ V |
funbreq.3 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
funbreq | ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐴𝐹𝐶 ↔ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funbreq.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | funbreq.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | funbreq.3 | . . . 4 ⊢ 𝐶 ∈ V | |
4 | 1, 2, 3 | fununiq 34382 | . . 3 ⊢ (Fun 𝐹 → ((𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶) → 𝐵 = 𝐶)) |
5 | 4 | expdimp 454 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐴𝐹𝐶 → 𝐵 = 𝐶)) |
6 | breq2 5114 | . . . 4 ⊢ (𝐵 = 𝐶 → (𝐴𝐹𝐵 ↔ 𝐴𝐹𝐶)) | |
7 | 6 | biimpcd 249 | . . 3 ⊢ (𝐴𝐹𝐵 → (𝐵 = 𝐶 → 𝐴𝐹𝐶)) |
8 | 7 | adantl 483 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐵 = 𝐶 → 𝐴𝐹𝐶)) |
9 | 5, 8 | impbid 211 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐴𝐹𝐶 ↔ 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3448 class class class wbr 5110 Fun wfun 6495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-br 5111 df-opab 5173 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-fun 6503 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |