Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funbreq Structured version   Visualization version   GIF version

Theorem funbreq 35770
Description: An equality condition for functions. (Contributed by Scott Fenton, 18-Feb-2013.)
Hypotheses
Ref Expression
funbreq.1 𝐴 ∈ V
funbreq.2 𝐵 ∈ V
funbreq.3 𝐶 ∈ V
Assertion
Ref Expression
funbreq ((Fun 𝐹𝐴𝐹𝐵) → (𝐴𝐹𝐶𝐵 = 𝐶))

Proof of Theorem funbreq
StepHypRef Expression
1 funbreq.1 . . . 4 𝐴 ∈ V
2 funbreq.2 . . . 4 𝐵 ∈ V
3 funbreq.3 . . . 4 𝐶 ∈ V
41, 2, 3fununiq 35769 . . 3 (Fun 𝐹 → ((𝐴𝐹𝐵𝐴𝐹𝐶) → 𝐵 = 𝐶))
54expdimp 452 . 2 ((Fun 𝐹𝐴𝐹𝐵) → (𝐴𝐹𝐶𝐵 = 𝐶))
6 breq2 5147 . . . 4 (𝐵 = 𝐶 → (𝐴𝐹𝐵𝐴𝐹𝐶))
76biimpcd 249 . . 3 (𝐴𝐹𝐵 → (𝐵 = 𝐶𝐴𝐹𝐶))
87adantl 481 . 2 ((Fun 𝐹𝐴𝐹𝐵) → (𝐵 = 𝐶𝐴𝐹𝐶))
95, 8impbid 212 1 ((Fun 𝐹𝐴𝐹𝐵) → (𝐴𝐹𝐶𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3480   class class class wbr 5143  Fun wfun 6555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-fun 6563
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator