| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funbreq | Structured version Visualization version GIF version | ||
| Description: An equality condition for functions. (Contributed by Scott Fenton, 18-Feb-2013.) |
| Ref | Expression |
|---|---|
| funbreq.1 | ⊢ 𝐴 ∈ V |
| funbreq.2 | ⊢ 𝐵 ∈ V |
| funbreq.3 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| funbreq | ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐴𝐹𝐶 ↔ 𝐵 = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funbreq.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | funbreq.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | funbreq.3 | . . . 4 ⊢ 𝐶 ∈ V | |
| 4 | 1, 2, 3 | fununiq 35791 | . . 3 ⊢ (Fun 𝐹 → ((𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶) → 𝐵 = 𝐶)) |
| 5 | 4 | expdimp 452 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐴𝐹𝐶 → 𝐵 = 𝐶)) |
| 6 | breq2 5128 | . . . 4 ⊢ (𝐵 = 𝐶 → (𝐴𝐹𝐵 ↔ 𝐴𝐹𝐶)) | |
| 7 | 6 | biimpcd 249 | . . 3 ⊢ (𝐴𝐹𝐵 → (𝐵 = 𝐶 → 𝐴𝐹𝐶)) |
| 8 | 7 | adantl 481 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐵 = 𝐶 → 𝐴𝐹𝐶)) |
| 9 | 5, 8 | impbid 212 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐴𝐹𝐶 ↔ 𝐵 = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 class class class wbr 5124 Fun wfun 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-fun 6538 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |