| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funbreq | Structured version Visualization version GIF version | ||
| Description: An equality condition for functions. (Contributed by Scott Fenton, 18-Feb-2013.) |
| Ref | Expression |
|---|---|
| funbreq.1 | ⊢ 𝐴 ∈ V |
| funbreq.2 | ⊢ 𝐵 ∈ V |
| funbreq.3 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| funbreq | ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐴𝐹𝐶 ↔ 𝐵 = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funbreq.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | funbreq.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | funbreq.3 | . . . 4 ⊢ 𝐶 ∈ V | |
| 4 | 1, 2, 3 | fununiq 35763 | . . 3 ⊢ (Fun 𝐹 → ((𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶) → 𝐵 = 𝐶)) |
| 5 | 4 | expdimp 452 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐴𝐹𝐶 → 𝐵 = 𝐶)) |
| 6 | breq2 5114 | . . . 4 ⊢ (𝐵 = 𝐶 → (𝐴𝐹𝐵 ↔ 𝐴𝐹𝐶)) | |
| 7 | 6 | biimpcd 249 | . . 3 ⊢ (𝐴𝐹𝐵 → (𝐵 = 𝐶 → 𝐴𝐹𝐶)) |
| 8 | 7 | adantl 481 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐵 = 𝐶 → 𝐴𝐹𝐶)) |
| 9 | 5, 8 | impbid 212 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐴𝐹𝐶 ↔ 𝐵 = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 Fun wfun 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-fun 6516 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |