Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funbreq Structured version   Visualization version   GIF version

Theorem funbreq 33744
Description: An equality condition for functions. (Contributed by Scott Fenton, 18-Feb-2013.)
Hypotheses
Ref Expression
funbreq.1 𝐴 ∈ V
funbreq.2 𝐵 ∈ V
funbreq.3 𝐶 ∈ V
Assertion
Ref Expression
funbreq ((Fun 𝐹𝐴𝐹𝐵) → (𝐴𝐹𝐶𝐵 = 𝐶))

Proof of Theorem funbreq
StepHypRef Expression
1 funbreq.1 . . . 4 𝐴 ∈ V
2 funbreq.2 . . . 4 𝐵 ∈ V
3 funbreq.3 . . . 4 𝐶 ∈ V
41, 2, 3fununiq 33743 . . 3 (Fun 𝐹 → ((𝐴𝐹𝐵𝐴𝐹𝐶) → 𝐵 = 𝐶))
54expdimp 453 . 2 ((Fun 𝐹𝐴𝐹𝐵) → (𝐴𝐹𝐶𝐵 = 𝐶))
6 breq2 5078 . . . 4 (𝐵 = 𝐶 → (𝐴𝐹𝐵𝐴𝐹𝐶))
76biimpcd 248 . . 3 (𝐴𝐹𝐵 → (𝐵 = 𝐶𝐴𝐹𝐶))
87adantl 482 . 2 ((Fun 𝐹𝐴𝐹𝐵) → (𝐵 = 𝐶𝐴𝐹𝐶))
95, 8impbid 211 1 ((Fun 𝐹𝐴𝐹𝐵) → (𝐴𝐹𝐶𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432   class class class wbr 5074  Fun wfun 6427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-fun 6435
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator