![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funbreq | Structured version Visualization version GIF version |
Description: An equality condition for functions. (Contributed by Scott Fenton, 18-Feb-2013.) |
Ref | Expression |
---|---|
funbreq.1 | ⊢ 𝐴 ∈ V |
funbreq.2 | ⊢ 𝐵 ∈ V |
funbreq.3 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
funbreq | ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐴𝐹𝐶 ↔ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funbreq.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | funbreq.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | funbreq.3 | . . . 4 ⊢ 𝐶 ∈ V | |
4 | 1, 2, 3 | fununiq 35732 | . . 3 ⊢ (Fun 𝐹 → ((𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶) → 𝐵 = 𝐶)) |
5 | 4 | expdimp 452 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐴𝐹𝐶 → 𝐵 = 𝐶)) |
6 | breq2 5170 | . . . 4 ⊢ (𝐵 = 𝐶 → (𝐴𝐹𝐵 ↔ 𝐴𝐹𝐶)) | |
7 | 6 | biimpcd 249 | . . 3 ⊢ (𝐴𝐹𝐵 → (𝐵 = 𝐶 → 𝐴𝐹𝐶)) |
8 | 7 | adantl 481 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐵 = 𝐶 → 𝐴𝐹𝐶)) |
9 | 5, 8 | impbid 212 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐴𝐹𝐶 ↔ 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 Fun wfun 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-fun 6575 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |