Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funbreq Structured version   Visualization version   GIF version

Theorem funbreq 33650
Description: An equality condition for functions. (Contributed by Scott Fenton, 18-Feb-2013.)
Hypotheses
Ref Expression
funbreq.1 𝐴 ∈ V
funbreq.2 𝐵 ∈ V
funbreq.3 𝐶 ∈ V
Assertion
Ref Expression
funbreq ((Fun 𝐹𝐴𝐹𝐵) → (𝐴𝐹𝐶𝐵 = 𝐶))

Proof of Theorem funbreq
StepHypRef Expression
1 funbreq.1 . . . 4 𝐴 ∈ V
2 funbreq.2 . . . 4 𝐵 ∈ V
3 funbreq.3 . . . 4 𝐶 ∈ V
41, 2, 3fununiq 33649 . . 3 (Fun 𝐹 → ((𝐴𝐹𝐵𝐴𝐹𝐶) → 𝐵 = 𝐶))
54expdimp 452 . 2 ((Fun 𝐹𝐴𝐹𝐵) → (𝐴𝐹𝐶𝐵 = 𝐶))
6 breq2 5074 . . . 4 (𝐵 = 𝐶 → (𝐴𝐹𝐵𝐴𝐹𝐶))
76biimpcd 248 . . 3 (𝐴𝐹𝐵 → (𝐵 = 𝐶𝐴𝐹𝐶))
87adantl 481 . 2 ((Fun 𝐹𝐴𝐹𝐵) → (𝐵 = 𝐶𝐴𝐹𝐶))
95, 8impbid 211 1 ((Fun 𝐹𝐴𝐹𝐵) → (𝐴𝐹𝐶𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422   class class class wbr 5070  Fun wfun 6412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-cnv 5588  df-co 5589  df-fun 6420
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator