![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > br1steq | Structured version Visualization version GIF version |
Description: Uniqueness condition for the binary relation 1st. (Contributed by Scott Fenton, 11-Apr-2014.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
Ref | Expression |
---|---|
br1steq.1 | ⊢ 𝐴 ∈ V |
br1steq.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
br1steq | ⊢ (〈𝐴, 𝐵〉1st 𝐶 ↔ 𝐶 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br1steq.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | br1steq.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | br1steqg 8035 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (〈𝐴, 𝐵〉1st 𝐶 ↔ 𝐶 = 𝐴)) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (〈𝐴, 𝐵〉1st 𝐶 ↔ 𝐶 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2106 Vcvv 3478 〈cop 4637 class class class wbr 5148 1st c1st 8011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fo 6569 df-fv 6571 df-1st 8013 |
This theorem is referenced by: dfdm5 35754 brtxp 35862 brpprod 35867 elfuns 35897 brimg 35919 brcup 35921 brcap 35922 brrestrict 35931 |
Copyright terms: Public domain | W3C validator |