Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1steq Structured version   Visualization version   GIF version

Theorem br1steq 34384
Description: Uniqueness condition for the binary relation 1st. (Contributed by Scott Fenton, 11-Apr-2014.) (Proof shortened by Mario Carneiro, 3-May-2015.)
Hypotheses
Ref Expression
br1steq.1 𝐴 ∈ V
br1steq.2 𝐵 ∈ V
Assertion
Ref Expression
br1steq (⟨𝐴, 𝐵⟩1st 𝐶𝐶 = 𝐴)

Proof of Theorem br1steq
StepHypRef Expression
1 br1steq.1 . 2 𝐴 ∈ V
2 br1steq.2 . 2 𝐵 ∈ V
3 br1steqg 7948 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟨𝐴, 𝐵⟩1st 𝐶𝐶 = 𝐴))
41, 2, 3mp2an 691 1 (⟨𝐴, 𝐵⟩1st 𝐶𝐶 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1542  wcel 2107  Vcvv 3448  cop 4597   class class class wbr 5110  1st c1st 7924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-fo 6507  df-fv 6509  df-1st 7926
This theorem is referenced by:  dfdm5  34386  brtxp  34494  brpprod  34499  elfuns  34529  brimg  34551  brcup  34553  brcap  34554  brrestrict  34563
  Copyright terms: Public domain W3C validator