Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fununmo | Structured version Visualization version GIF version |
Description: If the union of classes is a function, there is at most one element in relation to an arbitrary element regarding one of these classes. (Contributed by AV, 18-Jul-2019.) |
Ref | Expression |
---|---|
fununmo | ⊢ (Fun (𝐹 ∪ 𝐺) → ∃*𝑦 𝑥𝐹𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmo 6434 | . 2 ⊢ (Fun (𝐹 ∪ 𝐺) → ∃*𝑦 𝑥(𝐹 ∪ 𝐺)𝑦) | |
2 | orc 863 | . . . 4 ⊢ (𝑥𝐹𝑦 → (𝑥𝐹𝑦 ∨ 𝑥𝐺𝑦)) | |
3 | brun 5121 | . . . 4 ⊢ (𝑥(𝐹 ∪ 𝐺)𝑦 ↔ (𝑥𝐹𝑦 ∨ 𝑥𝐺𝑦)) | |
4 | 2, 3 | sylibr 233 | . . 3 ⊢ (𝑥𝐹𝑦 → 𝑥(𝐹 ∪ 𝐺)𝑦) |
5 | 4 | moimi 2545 | . 2 ⊢ (∃*𝑦 𝑥(𝐹 ∪ 𝐺)𝑦 → ∃*𝑦 𝑥𝐹𝑦) |
6 | 1, 5 | syl 17 | 1 ⊢ (Fun (𝐹 ∪ 𝐺) → ∃*𝑦 𝑥𝐹𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 ∃*wmo 2538 ∪ cun 3881 class class class wbr 5070 Fun wfun 6412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-fun 6420 |
This theorem is referenced by: fununfun 6466 |
Copyright terms: Public domain | W3C validator |