MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fununmo Structured version   Visualization version   GIF version

Theorem fununmo 6625
Description: If the union of classes is a function, there is at most one element in relation to an arbitrary element regarding one of these classes. (Contributed by AV, 18-Jul-2019.)
Assertion
Ref Expression
fununmo (Fun (𝐹𝐺) → ∃*𝑦 𝑥𝐹𝑦)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐹   𝑦,𝐺
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem fununmo
StepHypRef Expression
1 funmo 6593 . 2 (Fun (𝐹𝐺) → ∃*𝑦 𝑥(𝐹𝐺)𝑦)
2 orc 866 . . . 4 (𝑥𝐹𝑦 → (𝑥𝐹𝑦𝑥𝐺𝑦))
3 brun 5217 . . . 4 (𝑥(𝐹𝐺)𝑦 ↔ (𝑥𝐹𝑦𝑥𝐺𝑦))
42, 3sylibr 234 . . 3 (𝑥𝐹𝑦𝑥(𝐹𝐺)𝑦)
54moimi 2548 . 2 (∃*𝑦 𝑥(𝐹𝐺)𝑦 → ∃*𝑦 𝑥𝐹𝑦)
61, 5syl 17 1 (Fun (𝐹𝐺) → ∃*𝑦 𝑥𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846  ∃*wmo 2541  cun 3974   class class class wbr 5166  Fun wfun 6567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-fun 6575
This theorem is referenced by:  fununfun  6626
  Copyright terms: Public domain W3C validator