MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fununmo Structured version   Visualization version   GIF version

Theorem fununmo 6612
Description: If the union of classes is a function, there is at most one element in relation to an arbitrary element regarding one of these classes. (Contributed by AV, 18-Jul-2019.)
Assertion
Ref Expression
fununmo (Fun (𝐹𝐺) → ∃*𝑦 𝑥𝐹𝑦)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐹   𝑦,𝐺
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem fununmo
StepHypRef Expression
1 funmo 6580 . 2 (Fun (𝐹𝐺) → ∃*𝑦 𝑥(𝐹𝐺)𝑦)
2 orc 867 . . . 4 (𝑥𝐹𝑦 → (𝑥𝐹𝑦𝑥𝐺𝑦))
3 brun 5193 . . . 4 (𝑥(𝐹𝐺)𝑦 ↔ (𝑥𝐹𝑦𝑥𝐺𝑦))
42, 3sylibr 234 . . 3 (𝑥𝐹𝑦𝑥(𝐹𝐺)𝑦)
54moimi 2544 . 2 (∃*𝑦 𝑥(𝐹𝐺)𝑦 → ∃*𝑦 𝑥𝐹𝑦)
61, 5syl 17 1 (Fun (𝐹𝐺) → ∃*𝑦 𝑥𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847  ∃*wmo 2537  cun 3948   class class class wbr 5142  Fun wfun 6554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-mo 2539  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-fun 6562
This theorem is referenced by:  fununfun  6613
  Copyright terms: Public domain W3C validator