|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > fununmo | Structured version Visualization version GIF version | ||
| Description: If the union of classes is a function, there is at most one element in relation to an arbitrary element regarding one of these classes. (Contributed by AV, 18-Jul-2019.) | 
| Ref | Expression | 
|---|---|
| fununmo | ⊢ (Fun (𝐹 ∪ 𝐺) → ∃*𝑦 𝑥𝐹𝑦) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | funmo 6580 | . 2 ⊢ (Fun (𝐹 ∪ 𝐺) → ∃*𝑦 𝑥(𝐹 ∪ 𝐺)𝑦) | |
| 2 | orc 867 | . . . 4 ⊢ (𝑥𝐹𝑦 → (𝑥𝐹𝑦 ∨ 𝑥𝐺𝑦)) | |
| 3 | brun 5193 | . . . 4 ⊢ (𝑥(𝐹 ∪ 𝐺)𝑦 ↔ (𝑥𝐹𝑦 ∨ 𝑥𝐺𝑦)) | |
| 4 | 2, 3 | sylibr 234 | . . 3 ⊢ (𝑥𝐹𝑦 → 𝑥(𝐹 ∪ 𝐺)𝑦) | 
| 5 | 4 | moimi 2544 | . 2 ⊢ (∃*𝑦 𝑥(𝐹 ∪ 𝐺)𝑦 → ∃*𝑦 𝑥𝐹𝑦) | 
| 6 | 1, 5 | syl 17 | 1 ⊢ (Fun (𝐹 ∪ 𝐺) → ∃*𝑦 𝑥𝐹𝑦) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∨ wo 847 ∃*wmo 2537 ∪ cun 3948 class class class wbr 5142 Fun wfun 6554 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-mo 2539 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-fun 6562 | 
| This theorem is referenced by: fununfun 6613 | 
| Copyright terms: Public domain | W3C validator |