MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fununmo Structured version   Visualization version   GIF version

Theorem fununmo 6592
Description: If the union of classes is a function, there is at most one element in relation to an arbitrary element regarding one of these classes. (Contributed by AV, 18-Jul-2019.)
Assertion
Ref Expression
fununmo (Fun (𝐹𝐺) → ∃*𝑦 𝑥𝐹𝑦)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐹   𝑦,𝐺
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem fununmo
StepHypRef Expression
1 funmo 6560 . 2 (Fun (𝐹𝐺) → ∃*𝑦 𝑥(𝐹𝐺)𝑦)
2 orc 866 . . . 4 (𝑥𝐹𝑦 → (𝑥𝐹𝑦𝑥𝐺𝑦))
3 brun 5198 . . . 4 (𝑥(𝐹𝐺)𝑦 ↔ (𝑥𝐹𝑦𝑥𝐺𝑦))
42, 3sylibr 233 . . 3 (𝑥𝐹𝑦𝑥(𝐹𝐺)𝑦)
54moimi 2540 . 2 (∃*𝑦 𝑥(𝐹𝐺)𝑦 → ∃*𝑦 𝑥𝐹𝑦)
61, 5syl 17 1 (Fun (𝐹𝐺) → ∃*𝑦 𝑥𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846  ∃*wmo 2533  cun 3945   class class class wbr 5147  Fun wfun 6534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-mo 2535  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-fun 6542
This theorem is referenced by:  fununfun  6593
  Copyright terms: Public domain W3C validator