MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fununmo Structured version   Visualization version   GIF version

Theorem fununmo 6465
Description: If the union of classes is a function, there is at most one element in relation to an arbitrary element regarding one of these classes. (Contributed by AV, 18-Jul-2019.)
Assertion
Ref Expression
fununmo (Fun (𝐹𝐺) → ∃*𝑦 𝑥𝐹𝑦)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐹   𝑦,𝐺
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem fununmo
StepHypRef Expression
1 funmo 6434 . 2 (Fun (𝐹𝐺) → ∃*𝑦 𝑥(𝐹𝐺)𝑦)
2 orc 863 . . . 4 (𝑥𝐹𝑦 → (𝑥𝐹𝑦𝑥𝐺𝑦))
3 brun 5121 . . . 4 (𝑥(𝐹𝐺)𝑦 ↔ (𝑥𝐹𝑦𝑥𝐺𝑦))
42, 3sylibr 233 . . 3 (𝑥𝐹𝑦𝑥(𝐹𝐺)𝑦)
54moimi 2545 . 2 (∃*𝑦 𝑥(𝐹𝐺)𝑦 → ∃*𝑦 𝑥𝐹𝑦)
61, 5syl 17 1 (Fun (𝐹𝐺) → ∃*𝑦 𝑥𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843  ∃*wmo 2538  cun 3881   class class class wbr 5070  Fun wfun 6412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-fun 6420
This theorem is referenced by:  fununfun  6466
  Copyright terms: Public domain W3C validator