![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tskmcl | Structured version Visualization version GIF version |
Description: A Tarski class that contains π΄ is a Tarski class. (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 21-Sep-2014.) |
Ref | Expression |
---|---|
tskmcl | β’ (tarskiMapβπ΄) β Tarski |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tskmval 10838 | . . 3 β’ (π΄ β V β (tarskiMapβπ΄) = β© {π₯ β Tarski β£ π΄ β π₯}) | |
2 | ssrab2 4078 | . . . 4 β’ {π₯ β Tarski β£ π΄ β π₯} β Tarski | |
3 | id 22 | . . . . . . 7 β’ (π΄ β V β π΄ β V) | |
4 | grothtsk 10834 | . . . . . . 7 β’ βͺ Tarski = V | |
5 | 3, 4 | eleqtrrdi 2842 | . . . . . 6 β’ (π΄ β V β π΄ β βͺ Tarski) |
6 | eluni2 4913 | . . . . . 6 β’ (π΄ β βͺ Tarski β βπ₯ β Tarski π΄ β π₯) | |
7 | 5, 6 | sylib 217 | . . . . 5 β’ (π΄ β V β βπ₯ β Tarski π΄ β π₯) |
8 | rabn0 4386 | . . . . 5 β’ ({π₯ β Tarski β£ π΄ β π₯} β β β βπ₯ β Tarski π΄ β π₯) | |
9 | 7, 8 | sylibr 233 | . . . 4 β’ (π΄ β V β {π₯ β Tarski β£ π΄ β π₯} β β ) |
10 | inttsk 10773 | . . . 4 β’ (({π₯ β Tarski β£ π΄ β π₯} β Tarski β§ {π₯ β Tarski β£ π΄ β π₯} β β ) β β© {π₯ β Tarski β£ π΄ β π₯} β Tarski) | |
11 | 2, 9, 10 | sylancr 585 | . . 3 β’ (π΄ β V β β© {π₯ β Tarski β£ π΄ β π₯} β Tarski) |
12 | 1, 11 | eqeltrd 2831 | . 2 β’ (π΄ β V β (tarskiMapβπ΄) β Tarski) |
13 | fvprc 6884 | . . 3 β’ (Β¬ π΄ β V β (tarskiMapβπ΄) = β ) | |
14 | 0tsk 10754 | . . 3 β’ β β Tarski | |
15 | 13, 14 | eqeltrdi 2839 | . 2 β’ (Β¬ π΄ β V β (tarskiMapβπ΄) β Tarski) |
16 | 12, 15 | pm2.61i 182 | 1 β’ (tarskiMapβπ΄) β Tarski |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wcel 2104 β wne 2938 βwrex 3068 {crab 3430 Vcvv 3472 β wss 3949 β c0 4323 βͺ cuni 4909 β© cint 4951 βcfv 6544 Tarskictsk 10747 tarskiMapctskm 10836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-groth 10822 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-er 8707 df-en 8944 df-dom 8945 df-tsk 10748 df-tskm 10837 |
This theorem is referenced by: eltskm 10842 |
Copyright terms: Public domain | W3C validator |