MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskmcl Structured version   Visualization version   GIF version

Theorem tskmcl 10109
Description: A Tarski class that contains 𝐴 is a Tarski class. (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 21-Sep-2014.)
Assertion
Ref Expression
tskmcl (tarskiMap‘𝐴) ∈ Tarski

Proof of Theorem tskmcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tskmval 10107 . . 3 (𝐴 ∈ V → (tarskiMap‘𝐴) = {𝑥 ∈ Tarski ∣ 𝐴𝑥})
2 ssrab2 3977 . . . 4 {𝑥 ∈ Tarski ∣ 𝐴𝑥} ⊆ Tarski
3 id 22 . . . . . . 7 (𝐴 ∈ V → 𝐴 ∈ V)
4 grothtsk 10103 . . . . . . 7 Tarski = V
53, 4syl6eleqr 2894 . . . . . 6 (𝐴 ∈ V → 𝐴 Tarski)
6 eluni2 4749 . . . . . 6 (𝐴 Tarski ↔ ∃𝑥 ∈ Tarski 𝐴𝑥)
75, 6sylib 219 . . . . 5 (𝐴 ∈ V → ∃𝑥 ∈ Tarski 𝐴𝑥)
8 rabn0 4259 . . . . 5 ({𝑥 ∈ Tarski ∣ 𝐴𝑥} ≠ ∅ ↔ ∃𝑥 ∈ Tarski 𝐴𝑥)
97, 8sylibr 235 . . . 4 (𝐴 ∈ V → {𝑥 ∈ Tarski ∣ 𝐴𝑥} ≠ ∅)
10 inttsk 10042 . . . 4 (({𝑥 ∈ Tarski ∣ 𝐴𝑥} ⊆ Tarski ∧ {𝑥 ∈ Tarski ∣ 𝐴𝑥} ≠ ∅) → {𝑥 ∈ Tarski ∣ 𝐴𝑥} ∈ Tarski)
112, 9, 10sylancr 587 . . 3 (𝐴 ∈ V → {𝑥 ∈ Tarski ∣ 𝐴𝑥} ∈ Tarski)
121, 11eqeltrd 2883 . 2 (𝐴 ∈ V → (tarskiMap‘𝐴) ∈ Tarski)
13 fvprc 6531 . . 3 𝐴 ∈ V → (tarskiMap‘𝐴) = ∅)
14 0tsk 10023 . . 3 ∅ ∈ Tarski
1513, 14syl6eqel 2891 . 2 𝐴 ∈ V → (tarskiMap‘𝐴) ∈ Tarski)
1612, 15pm2.61i 183 1 (tarskiMap‘𝐴) ∈ Tarski
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2081  wne 2984  wrex 3106  {crab 3109  Vcvv 3437  wss 3859  c0 4211   cuni 4745   cint 4782  cfv 6225  Tarskictsk 10016  tarskiMapctskm 10105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-groth 10091
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3707  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-int 4783  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-er 8139  df-en 8358  df-dom 8359  df-tsk 10017  df-tskm 10106
This theorem is referenced by:  eltskm  10111
  Copyright terms: Public domain W3C validator