![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tskmcl | Structured version Visualization version GIF version |
Description: A Tarski class that contains 𝐴 is a Tarski class. (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 21-Sep-2014.) |
Ref | Expression |
---|---|
tskmcl | ⊢ (tarskiMap‘𝐴) ∈ Tarski |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tskmval 10107 | . . 3 ⊢ (𝐴 ∈ V → (tarskiMap‘𝐴) = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) | |
2 | ssrab2 3977 | . . . 4 ⊢ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ⊆ Tarski | |
3 | id 22 | . . . . . . 7 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
4 | grothtsk 10103 | . . . . . . 7 ⊢ ∪ Tarski = V | |
5 | 3, 4 | syl6eleqr 2894 | . . . . . 6 ⊢ (𝐴 ∈ V → 𝐴 ∈ ∪ Tarski) |
6 | eluni2 4749 | . . . . . 6 ⊢ (𝐴 ∈ ∪ Tarski ↔ ∃𝑥 ∈ Tarski 𝐴 ∈ 𝑥) | |
7 | 5, 6 | sylib 219 | . . . . 5 ⊢ (𝐴 ∈ V → ∃𝑥 ∈ Tarski 𝐴 ∈ 𝑥) |
8 | rabn0 4259 | . . . . 5 ⊢ ({𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ≠ ∅ ↔ ∃𝑥 ∈ Tarski 𝐴 ∈ 𝑥) | |
9 | 7, 8 | sylibr 235 | . . . 4 ⊢ (𝐴 ∈ V → {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ≠ ∅) |
10 | inttsk 10042 | . . . 4 ⊢ (({𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ⊆ Tarski ∧ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ≠ ∅) → ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ∈ Tarski) | |
11 | 2, 9, 10 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ V → ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ∈ Tarski) |
12 | 1, 11 | eqeltrd 2883 | . 2 ⊢ (𝐴 ∈ V → (tarskiMap‘𝐴) ∈ Tarski) |
13 | fvprc 6531 | . . 3 ⊢ (¬ 𝐴 ∈ V → (tarskiMap‘𝐴) = ∅) | |
14 | 0tsk 10023 | . . 3 ⊢ ∅ ∈ Tarski | |
15 | 13, 14 | syl6eqel 2891 | . 2 ⊢ (¬ 𝐴 ∈ V → (tarskiMap‘𝐴) ∈ Tarski) |
16 | 12, 15 | pm2.61i 183 | 1 ⊢ (tarskiMap‘𝐴) ∈ Tarski |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2081 ≠ wne 2984 ∃wrex 3106 {crab 3109 Vcvv 3437 ⊆ wss 3859 ∅c0 4211 ∪ cuni 4745 ∩ cint 4782 ‘cfv 6225 Tarskictsk 10016 tarskiMapctskm 10105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-groth 10091 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-int 4783 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-er 8139 df-en 8358 df-dom 8359 df-tsk 10017 df-tskm 10106 |
This theorem is referenced by: eltskm 10111 |
Copyright terms: Public domain | W3C validator |