Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tskmcl | Structured version Visualization version GIF version |
Description: A Tarski class that contains 𝐴 is a Tarski class. (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 21-Sep-2014.) |
Ref | Expression |
---|---|
tskmcl | ⊢ (tarskiMap‘𝐴) ∈ Tarski |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tskmval 10595 | . . 3 ⊢ (𝐴 ∈ V → (tarskiMap‘𝐴) = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) | |
2 | ssrab2 4013 | . . . 4 ⊢ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ⊆ Tarski | |
3 | id 22 | . . . . . . 7 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
4 | grothtsk 10591 | . . . . . . 7 ⊢ ∪ Tarski = V | |
5 | 3, 4 | eleqtrrdi 2850 | . . . . . 6 ⊢ (𝐴 ∈ V → 𝐴 ∈ ∪ Tarski) |
6 | eluni2 4843 | . . . . . 6 ⊢ (𝐴 ∈ ∪ Tarski ↔ ∃𝑥 ∈ Tarski 𝐴 ∈ 𝑥) | |
7 | 5, 6 | sylib 217 | . . . . 5 ⊢ (𝐴 ∈ V → ∃𝑥 ∈ Tarski 𝐴 ∈ 𝑥) |
8 | rabn0 4319 | . . . . 5 ⊢ ({𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ≠ ∅ ↔ ∃𝑥 ∈ Tarski 𝐴 ∈ 𝑥) | |
9 | 7, 8 | sylibr 233 | . . . 4 ⊢ (𝐴 ∈ V → {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ≠ ∅) |
10 | inttsk 10530 | . . . 4 ⊢ (({𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ⊆ Tarski ∧ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ≠ ∅) → ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ∈ Tarski) | |
11 | 2, 9, 10 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ V → ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ∈ Tarski) |
12 | 1, 11 | eqeltrd 2839 | . 2 ⊢ (𝐴 ∈ V → (tarskiMap‘𝐴) ∈ Tarski) |
13 | fvprc 6766 | . . 3 ⊢ (¬ 𝐴 ∈ V → (tarskiMap‘𝐴) = ∅) | |
14 | 0tsk 10511 | . . 3 ⊢ ∅ ∈ Tarski | |
15 | 13, 14 | eqeltrdi 2847 | . 2 ⊢ (¬ 𝐴 ∈ V → (tarskiMap‘𝐴) ∈ Tarski) |
16 | 12, 15 | pm2.61i 182 | 1 ⊢ (tarskiMap‘𝐴) ∈ Tarski |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 {crab 3068 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 ∪ cuni 4839 ∩ cint 4879 ‘cfv 6433 Tarskictsk 10504 tarskiMapctskm 10593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-groth 10579 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-er 8498 df-en 8734 df-dom 8735 df-tsk 10505 df-tskm 10594 |
This theorem is referenced by: eltskm 10599 |
Copyright terms: Public domain | W3C validator |