| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tskmcl | Structured version Visualization version GIF version | ||
| Description: A Tarski class that contains 𝐴 is a Tarski class. (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 21-Sep-2014.) |
| Ref | Expression |
|---|---|
| tskmcl | ⊢ (tarskiMap‘𝐴) ∈ Tarski |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tskmval 10792 | . . 3 ⊢ (𝐴 ∈ V → (tarskiMap‘𝐴) = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) | |
| 2 | ssrab2 4043 | . . . 4 ⊢ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ⊆ Tarski | |
| 3 | id 22 | . . . . . . 7 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
| 4 | grothtsk 10788 | . . . . . . 7 ⊢ ∪ Tarski = V | |
| 5 | 3, 4 | eleqtrrdi 2839 | . . . . . 6 ⊢ (𝐴 ∈ V → 𝐴 ∈ ∪ Tarski) |
| 6 | eluni2 4875 | . . . . . 6 ⊢ (𝐴 ∈ ∪ Tarski ↔ ∃𝑥 ∈ Tarski 𝐴 ∈ 𝑥) | |
| 7 | 5, 6 | sylib 218 | . . . . 5 ⊢ (𝐴 ∈ V → ∃𝑥 ∈ Tarski 𝐴 ∈ 𝑥) |
| 8 | rabn0 4352 | . . . . 5 ⊢ ({𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ≠ ∅ ↔ ∃𝑥 ∈ Tarski 𝐴 ∈ 𝑥) | |
| 9 | 7, 8 | sylibr 234 | . . . 4 ⊢ (𝐴 ∈ V → {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ≠ ∅) |
| 10 | inttsk 10727 | . . . 4 ⊢ (({𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ⊆ Tarski ∧ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ≠ ∅) → ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ∈ Tarski) | |
| 11 | 2, 9, 10 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ V → ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ∈ Tarski) |
| 12 | 1, 11 | eqeltrd 2828 | . 2 ⊢ (𝐴 ∈ V → (tarskiMap‘𝐴) ∈ Tarski) |
| 13 | fvprc 6850 | . . 3 ⊢ (¬ 𝐴 ∈ V → (tarskiMap‘𝐴) = ∅) | |
| 14 | 0tsk 10708 | . . 3 ⊢ ∅ ∈ Tarski | |
| 15 | 13, 14 | eqeltrdi 2836 | . 2 ⊢ (¬ 𝐴 ∈ V → (tarskiMap‘𝐴) ∈ Tarski) |
| 16 | 12, 15 | pm2.61i 182 | 1 ⊢ (tarskiMap‘𝐴) ∈ Tarski |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3405 Vcvv 3447 ⊆ wss 3914 ∅c0 4296 ∪ cuni 4871 ∩ cint 4910 ‘cfv 6511 Tarskictsk 10701 tarskiMapctskm 10790 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-groth 10776 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-er 8671 df-en 8919 df-dom 8920 df-tsk 10702 df-tskm 10791 |
| This theorem is referenced by: eltskm 10796 |
| Copyright terms: Public domain | W3C validator |