MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskmcl Structured version   Visualization version   GIF version

Theorem tskmcl 10528
Description: A Tarski class that contains 𝐴 is a Tarski class. (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 21-Sep-2014.)
Assertion
Ref Expression
tskmcl (tarskiMap‘𝐴) ∈ Tarski

Proof of Theorem tskmcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tskmval 10526 . . 3 (𝐴 ∈ V → (tarskiMap‘𝐴) = {𝑥 ∈ Tarski ∣ 𝐴𝑥})
2 ssrab2 4009 . . . 4 {𝑥 ∈ Tarski ∣ 𝐴𝑥} ⊆ Tarski
3 id 22 . . . . . . 7 (𝐴 ∈ V → 𝐴 ∈ V)
4 grothtsk 10522 . . . . . . 7 Tarski = V
53, 4eleqtrrdi 2850 . . . . . 6 (𝐴 ∈ V → 𝐴 Tarski)
6 eluni2 4840 . . . . . 6 (𝐴 Tarski ↔ ∃𝑥 ∈ Tarski 𝐴𝑥)
75, 6sylib 217 . . . . 5 (𝐴 ∈ V → ∃𝑥 ∈ Tarski 𝐴𝑥)
8 rabn0 4316 . . . . 5 ({𝑥 ∈ Tarski ∣ 𝐴𝑥} ≠ ∅ ↔ ∃𝑥 ∈ Tarski 𝐴𝑥)
97, 8sylibr 233 . . . 4 (𝐴 ∈ V → {𝑥 ∈ Tarski ∣ 𝐴𝑥} ≠ ∅)
10 inttsk 10461 . . . 4 (({𝑥 ∈ Tarski ∣ 𝐴𝑥} ⊆ Tarski ∧ {𝑥 ∈ Tarski ∣ 𝐴𝑥} ≠ ∅) → {𝑥 ∈ Tarski ∣ 𝐴𝑥} ∈ Tarski)
112, 9, 10sylancr 586 . . 3 (𝐴 ∈ V → {𝑥 ∈ Tarski ∣ 𝐴𝑥} ∈ Tarski)
121, 11eqeltrd 2839 . 2 (𝐴 ∈ V → (tarskiMap‘𝐴) ∈ Tarski)
13 fvprc 6748 . . 3 𝐴 ∈ V → (tarskiMap‘𝐴) = ∅)
14 0tsk 10442 . . 3 ∅ ∈ Tarski
1513, 14eqeltrdi 2847 . 2 𝐴 ∈ V → (tarskiMap‘𝐴) ∈ Tarski)
1612, 15pm2.61i 182 1 (tarskiMap‘𝐴) ∈ Tarski
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2108  wne 2942  wrex 3064  {crab 3067  Vcvv 3422  wss 3883  c0 4253   cuni 4836   cint 4876  cfv 6418  Tarskictsk 10435  tarskiMapctskm 10524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-groth 10510
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-er 8456  df-en 8692  df-dom 8693  df-tsk 10436  df-tskm 10525
This theorem is referenced by:  eltskm  10530
  Copyright terms: Public domain W3C validator