| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tskmcl | Structured version Visualization version GIF version | ||
| Description: A Tarski class that contains 𝐴 is a Tarski class. (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 21-Sep-2014.) |
| Ref | Expression |
|---|---|
| tskmcl | ⊢ (tarskiMap‘𝐴) ∈ Tarski |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tskmval 10853 | . . 3 ⊢ (𝐴 ∈ V → (tarskiMap‘𝐴) = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) | |
| 2 | ssrab2 4055 | . . . 4 ⊢ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ⊆ Tarski | |
| 3 | id 22 | . . . . . . 7 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
| 4 | grothtsk 10849 | . . . . . . 7 ⊢ ∪ Tarski = V | |
| 5 | 3, 4 | eleqtrrdi 2845 | . . . . . 6 ⊢ (𝐴 ∈ V → 𝐴 ∈ ∪ Tarski) |
| 6 | eluni2 4887 | . . . . . 6 ⊢ (𝐴 ∈ ∪ Tarski ↔ ∃𝑥 ∈ Tarski 𝐴 ∈ 𝑥) | |
| 7 | 5, 6 | sylib 218 | . . . . 5 ⊢ (𝐴 ∈ V → ∃𝑥 ∈ Tarski 𝐴 ∈ 𝑥) |
| 8 | rabn0 4364 | . . . . 5 ⊢ ({𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ≠ ∅ ↔ ∃𝑥 ∈ Tarski 𝐴 ∈ 𝑥) | |
| 9 | 7, 8 | sylibr 234 | . . . 4 ⊢ (𝐴 ∈ V → {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ≠ ∅) |
| 10 | inttsk 10788 | . . . 4 ⊢ (({𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ⊆ Tarski ∧ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ≠ ∅) → ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ∈ Tarski) | |
| 11 | 2, 9, 10 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ V → ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ∈ Tarski) |
| 12 | 1, 11 | eqeltrd 2834 | . 2 ⊢ (𝐴 ∈ V → (tarskiMap‘𝐴) ∈ Tarski) |
| 13 | fvprc 6868 | . . 3 ⊢ (¬ 𝐴 ∈ V → (tarskiMap‘𝐴) = ∅) | |
| 14 | 0tsk 10769 | . . 3 ⊢ ∅ ∈ Tarski | |
| 15 | 13, 14 | eqeltrdi 2842 | . 2 ⊢ (¬ 𝐴 ∈ V → (tarskiMap‘𝐴) ∈ Tarski) |
| 16 | 12, 15 | pm2.61i 182 | 1 ⊢ (tarskiMap‘𝐴) ∈ Tarski |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 {crab 3415 Vcvv 3459 ⊆ wss 3926 ∅c0 4308 ∪ cuni 4883 ∩ cint 4922 ‘cfv 6531 Tarskictsk 10762 tarskiMapctskm 10851 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-groth 10837 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-er 8719 df-en 8960 df-dom 8961 df-tsk 10763 df-tskm 10852 |
| This theorem is referenced by: eltskm 10857 |
| Copyright terms: Public domain | W3C validator |