| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inaprc | Structured version Visualization version GIF version | ||
| Description: An equivalent to the Tarski-Grothendieck Axiom: there is a proper class of inaccessible cardinals. (Contributed by Mario Carneiro, 9-Jun-2013.) |
| Ref | Expression |
|---|---|
| inaprc | ⊢ Inacc ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inawina 10584 | . . . . . 6 ⊢ (𝑥 ∈ Inacc → 𝑥 ∈ Inaccw) | |
| 2 | winaon 10582 | . . . . . 6 ⊢ (𝑥 ∈ Inaccw → 𝑥 ∈ On) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ Inacc → 𝑥 ∈ On) |
| 4 | 3 | ssriv 3939 | . . . 4 ⊢ Inacc ⊆ On |
| 5 | ssorduni 7715 | . . . 4 ⊢ (Inacc ⊆ On → Ord ∪ Inacc) | |
| 6 | ordsson 7719 | . . . 4 ⊢ (Ord ∪ Inacc → ∪ Inacc ⊆ On) | |
| 7 | 4, 5, 6 | mp2b 10 | . . 3 ⊢ ∪ Inacc ⊆ On |
| 8 | vex 3440 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 9 | grothtsk 10729 | . . . . . . . 8 ⊢ ∪ Tarski = V | |
| 10 | 8, 9 | eleqtrri 2827 | . . . . . . 7 ⊢ 𝑦 ∈ ∪ Tarski |
| 11 | eluni2 4862 | . . . . . . 7 ⊢ (𝑦 ∈ ∪ Tarski ↔ ∃𝑤 ∈ Tarski 𝑦 ∈ 𝑤) | |
| 12 | 10, 11 | mpbi 230 | . . . . . 6 ⊢ ∃𝑤 ∈ Tarski 𝑦 ∈ 𝑤 |
| 13 | ne0i 4292 | . . . . . . . . 9 ⊢ (𝑦 ∈ 𝑤 → 𝑤 ≠ ∅) | |
| 14 | tskcard 10675 | . . . . . . . . 9 ⊢ ((𝑤 ∈ Tarski ∧ 𝑤 ≠ ∅) → (card‘𝑤) ∈ Inacc) | |
| 15 | 13, 14 | sylan2 593 | . . . . . . . 8 ⊢ ((𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤) → (card‘𝑤) ∈ Inacc) |
| 16 | tsksdom 10650 | . . . . . . . . . 10 ⊢ ((𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤) → 𝑦 ≺ 𝑤) | |
| 17 | 16 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤)) → 𝑦 ≺ 𝑤) |
| 18 | tskwe2 10667 | . . . . . . . . . . 11 ⊢ (𝑤 ∈ Tarski → 𝑤 ∈ dom card) | |
| 19 | 18 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤) → 𝑤 ∈ dom card) |
| 20 | cardsdomel 9870 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ On ∧ 𝑤 ∈ dom card) → (𝑦 ≺ 𝑤 ↔ 𝑦 ∈ (card‘𝑤))) | |
| 21 | 19, 20 | sylan2 593 | . . . . . . . . 9 ⊢ ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤)) → (𝑦 ≺ 𝑤 ↔ 𝑦 ∈ (card‘𝑤))) |
| 22 | 17, 21 | mpbid 232 | . . . . . . . 8 ⊢ ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤)) → 𝑦 ∈ (card‘𝑤)) |
| 23 | eleq2 2817 | . . . . . . . . 9 ⊢ (𝑧 = (card‘𝑤) → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ (card‘𝑤))) | |
| 24 | 23 | rspcev 3577 | . . . . . . . 8 ⊢ (((card‘𝑤) ∈ Inacc ∧ 𝑦 ∈ (card‘𝑤)) → ∃𝑧 ∈ Inacc 𝑦 ∈ 𝑧) |
| 25 | 15, 22, 24 | syl2an2 686 | . . . . . . 7 ⊢ ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤)) → ∃𝑧 ∈ Inacc 𝑦 ∈ 𝑧) |
| 26 | 25 | rexlimdvaa 3131 | . . . . . 6 ⊢ (𝑦 ∈ On → (∃𝑤 ∈ Tarski 𝑦 ∈ 𝑤 → ∃𝑧 ∈ Inacc 𝑦 ∈ 𝑧)) |
| 27 | 12, 26 | mpi 20 | . . . . 5 ⊢ (𝑦 ∈ On → ∃𝑧 ∈ Inacc 𝑦 ∈ 𝑧) |
| 28 | eluni2 4862 | . . . . 5 ⊢ (𝑦 ∈ ∪ Inacc ↔ ∃𝑧 ∈ Inacc 𝑦 ∈ 𝑧) | |
| 29 | 27, 28 | sylibr 234 | . . . 4 ⊢ (𝑦 ∈ On → 𝑦 ∈ ∪ Inacc) |
| 30 | 29 | ssriv 3939 | . . 3 ⊢ On ⊆ ∪ Inacc |
| 31 | 7, 30 | eqssi 3952 | . 2 ⊢ ∪ Inacc = On |
| 32 | ssonprc 7723 | . . 3 ⊢ (Inacc ⊆ On → (Inacc ∉ V ↔ ∪ Inacc = On)) | |
| 33 | 4, 32 | ax-mp 5 | . 2 ⊢ (Inacc ∉ V ↔ ∪ Inacc = On) |
| 34 | 31, 33 | mpbir 231 | 1 ⊢ Inacc ∉ V |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∉ wnel 3029 ∃wrex 3053 Vcvv 3436 ⊆ wss 3903 ∅c0 4284 ∪ cuni 4858 class class class wbr 5092 dom cdm 5619 Ord word 6306 Oncon0 6307 ‘cfv 6482 ≺ csdm 8871 cardccrd 9831 Inaccwcwina 10576 Inacccina 10577 Tarskictsk 10642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-ac2 10357 ax-groth 10717 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-smo 8269 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-oi 9402 df-har 9449 df-r1 9660 df-card 9835 df-aleph 9836 df-cf 9837 df-acn 9838 df-ac 10010 df-wina 10578 df-ina 10579 df-tsk 10643 |
| This theorem is referenced by: inaex 44280 |
| Copyright terms: Public domain | W3C validator |