Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inaprc | Structured version Visualization version GIF version |
Description: An equivalent to the Tarski-Grothendieck Axiom: there is a proper class of inaccessible cardinals. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
inaprc | ⊢ Inacc ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inawina 10446 | . . . . . 6 ⊢ (𝑥 ∈ Inacc → 𝑥 ∈ Inaccw) | |
2 | winaon 10444 | . . . . . 6 ⊢ (𝑥 ∈ Inaccw → 𝑥 ∈ On) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ Inacc → 𝑥 ∈ On) |
4 | 3 | ssriv 3925 | . . . 4 ⊢ Inacc ⊆ On |
5 | ssorduni 7629 | . . . 4 ⊢ (Inacc ⊆ On → Ord ∪ Inacc) | |
6 | ordsson 7633 | . . . 4 ⊢ (Ord ∪ Inacc → ∪ Inacc ⊆ On) | |
7 | 4, 5, 6 | mp2b 10 | . . 3 ⊢ ∪ Inacc ⊆ On |
8 | vex 3436 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
9 | grothtsk 10591 | . . . . . . . 8 ⊢ ∪ Tarski = V | |
10 | 8, 9 | eleqtrri 2838 | . . . . . . 7 ⊢ 𝑦 ∈ ∪ Tarski |
11 | eluni2 4843 | . . . . . . 7 ⊢ (𝑦 ∈ ∪ Tarski ↔ ∃𝑤 ∈ Tarski 𝑦 ∈ 𝑤) | |
12 | 10, 11 | mpbi 229 | . . . . . 6 ⊢ ∃𝑤 ∈ Tarski 𝑦 ∈ 𝑤 |
13 | ne0i 4268 | . . . . . . . . 9 ⊢ (𝑦 ∈ 𝑤 → 𝑤 ≠ ∅) | |
14 | tskcard 10537 | . . . . . . . . 9 ⊢ ((𝑤 ∈ Tarski ∧ 𝑤 ≠ ∅) → (card‘𝑤) ∈ Inacc) | |
15 | 13, 14 | sylan2 593 | . . . . . . . 8 ⊢ ((𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤) → (card‘𝑤) ∈ Inacc) |
16 | tsksdom 10512 | . . . . . . . . . 10 ⊢ ((𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤) → 𝑦 ≺ 𝑤) | |
17 | 16 | adantl 482 | . . . . . . . . 9 ⊢ ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤)) → 𝑦 ≺ 𝑤) |
18 | tskwe2 10529 | . . . . . . . . . . 11 ⊢ (𝑤 ∈ Tarski → 𝑤 ∈ dom card) | |
19 | 18 | adantr 481 | . . . . . . . . . 10 ⊢ ((𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤) → 𝑤 ∈ dom card) |
20 | cardsdomel 9732 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ On ∧ 𝑤 ∈ dom card) → (𝑦 ≺ 𝑤 ↔ 𝑦 ∈ (card‘𝑤))) | |
21 | 19, 20 | sylan2 593 | . . . . . . . . 9 ⊢ ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤)) → (𝑦 ≺ 𝑤 ↔ 𝑦 ∈ (card‘𝑤))) |
22 | 17, 21 | mpbid 231 | . . . . . . . 8 ⊢ ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤)) → 𝑦 ∈ (card‘𝑤)) |
23 | eleq2 2827 | . . . . . . . . 9 ⊢ (𝑧 = (card‘𝑤) → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ (card‘𝑤))) | |
24 | 23 | rspcev 3561 | . . . . . . . 8 ⊢ (((card‘𝑤) ∈ Inacc ∧ 𝑦 ∈ (card‘𝑤)) → ∃𝑧 ∈ Inacc 𝑦 ∈ 𝑧) |
25 | 15, 22, 24 | syl2an2 683 | . . . . . . 7 ⊢ ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤)) → ∃𝑧 ∈ Inacc 𝑦 ∈ 𝑧) |
26 | 25 | rexlimdvaa 3214 | . . . . . 6 ⊢ (𝑦 ∈ On → (∃𝑤 ∈ Tarski 𝑦 ∈ 𝑤 → ∃𝑧 ∈ Inacc 𝑦 ∈ 𝑧)) |
27 | 12, 26 | mpi 20 | . . . . 5 ⊢ (𝑦 ∈ On → ∃𝑧 ∈ Inacc 𝑦 ∈ 𝑧) |
28 | eluni2 4843 | . . . . 5 ⊢ (𝑦 ∈ ∪ Inacc ↔ ∃𝑧 ∈ Inacc 𝑦 ∈ 𝑧) | |
29 | 27, 28 | sylibr 233 | . . . 4 ⊢ (𝑦 ∈ On → 𝑦 ∈ ∪ Inacc) |
30 | 29 | ssriv 3925 | . . 3 ⊢ On ⊆ ∪ Inacc |
31 | 7, 30 | eqssi 3937 | . 2 ⊢ ∪ Inacc = On |
32 | ssonprc 7637 | . . 3 ⊢ (Inacc ⊆ On → (Inacc ∉ V ↔ ∪ Inacc = On)) | |
33 | 4, 32 | ax-mp 5 | . 2 ⊢ (Inacc ∉ V ↔ ∪ Inacc = On) |
34 | 31, 33 | mpbir 230 | 1 ⊢ Inacc ∉ V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∉ wnel 3049 ∃wrex 3065 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 ∪ cuni 4839 class class class wbr 5074 dom cdm 5589 Ord word 6265 Oncon0 6266 ‘cfv 6433 ≺ csdm 8732 cardccrd 9693 Inaccwcwina 10438 Inacccina 10439 Tarskictsk 10504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-ac2 10219 ax-groth 10579 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-smo 8177 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-oi 9269 df-har 9316 df-r1 9522 df-card 9697 df-aleph 9698 df-cf 9699 df-acn 9700 df-ac 9872 df-wina 10440 df-ina 10441 df-tsk 10505 |
This theorem is referenced by: inaex 41915 |
Copyright terms: Public domain | W3C validator |