MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inaprc Structured version   Visualization version   GIF version

Theorem inaprc 10789
Description: An equivalent to the Tarski-Grothendieck Axiom: there is a proper class of inaccessible cardinals. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
inaprc Inacc ∉ V

Proof of Theorem inaprc
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inawina 10643 . . . . . 6 (𝑥 ∈ Inacc → 𝑥 ∈ Inaccw)
2 winaon 10641 . . . . . 6 (𝑥 ∈ Inaccw𝑥 ∈ On)
31, 2syl 17 . . . . 5 (𝑥 ∈ Inacc → 𝑥 ∈ On)
43ssriv 3950 . . . 4 Inacc ⊆ On
5 ssorduni 7755 . . . 4 (Inacc ⊆ On → Ord Inacc)
6 ordsson 7759 . . . 4 (Ord Inacc → Inacc ⊆ On)
74, 5, 6mp2b 10 . . 3 Inacc ⊆ On
8 vex 3451 . . . . . . . 8 𝑦 ∈ V
9 grothtsk 10788 . . . . . . . 8 Tarski = V
108, 9eleqtrri 2827 . . . . . . 7 𝑦 Tarski
11 eluni2 4875 . . . . . . 7 (𝑦 Tarski ↔ ∃𝑤 ∈ Tarski 𝑦𝑤)
1210, 11mpbi 230 . . . . . 6 𝑤 ∈ Tarski 𝑦𝑤
13 ne0i 4304 . . . . . . . . 9 (𝑦𝑤𝑤 ≠ ∅)
14 tskcard 10734 . . . . . . . . 9 ((𝑤 ∈ Tarski ∧ 𝑤 ≠ ∅) → (card‘𝑤) ∈ Inacc)
1513, 14sylan2 593 . . . . . . . 8 ((𝑤 ∈ Tarski ∧ 𝑦𝑤) → (card‘𝑤) ∈ Inacc)
16 tsksdom 10709 . . . . . . . . . 10 ((𝑤 ∈ Tarski ∧ 𝑦𝑤) → 𝑦𝑤)
1716adantl 481 . . . . . . . . 9 ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦𝑤)) → 𝑦𝑤)
18 tskwe2 10726 . . . . . . . . . . 11 (𝑤 ∈ Tarski → 𝑤 ∈ dom card)
1918adantr 480 . . . . . . . . . 10 ((𝑤 ∈ Tarski ∧ 𝑦𝑤) → 𝑤 ∈ dom card)
20 cardsdomel 9927 . . . . . . . . . 10 ((𝑦 ∈ On ∧ 𝑤 ∈ dom card) → (𝑦𝑤𝑦 ∈ (card‘𝑤)))
2119, 20sylan2 593 . . . . . . . . 9 ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦𝑤)) → (𝑦𝑤𝑦 ∈ (card‘𝑤)))
2217, 21mpbid 232 . . . . . . . 8 ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦𝑤)) → 𝑦 ∈ (card‘𝑤))
23 eleq2 2817 . . . . . . . . 9 (𝑧 = (card‘𝑤) → (𝑦𝑧𝑦 ∈ (card‘𝑤)))
2423rspcev 3588 . . . . . . . 8 (((card‘𝑤) ∈ Inacc ∧ 𝑦 ∈ (card‘𝑤)) → ∃𝑧 ∈ Inacc 𝑦𝑧)
2515, 22, 24syl2an2 686 . . . . . . 7 ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦𝑤)) → ∃𝑧 ∈ Inacc 𝑦𝑧)
2625rexlimdvaa 3135 . . . . . 6 (𝑦 ∈ On → (∃𝑤 ∈ Tarski 𝑦𝑤 → ∃𝑧 ∈ Inacc 𝑦𝑧))
2712, 26mpi 20 . . . . 5 (𝑦 ∈ On → ∃𝑧 ∈ Inacc 𝑦𝑧)
28 eluni2 4875 . . . . 5 (𝑦 Inacc ↔ ∃𝑧 ∈ Inacc 𝑦𝑧)
2927, 28sylibr 234 . . . 4 (𝑦 ∈ On → 𝑦 Inacc)
3029ssriv 3950 . . 3 On ⊆ Inacc
317, 30eqssi 3963 . 2 Inacc = On
32 ssonprc 7763 . . 3 (Inacc ⊆ On → (Inacc ∉ V ↔ Inacc = On))
334, 32ax-mp 5 . 2 (Inacc ∉ V ↔ Inacc = On)
3431, 33mpbir 231 1 Inacc ∉ V
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wnel 3029  wrex 3053  Vcvv 3447  wss 3914  c0 4296   cuni 4871   class class class wbr 5107  dom cdm 5638  Ord word 6331  Oncon0 6332  cfv 6511  csdm 8917  cardccrd 9888  Inaccwcwina 10635  Inacccina 10636  Tarskictsk 10701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-ac2 10416  ax-groth 10776
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-smo 8315  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-oi 9463  df-har 9510  df-r1 9717  df-card 9892  df-aleph 9893  df-cf 9894  df-acn 9895  df-ac 10069  df-wina 10637  df-ina 10638  df-tsk 10702
This theorem is referenced by:  inaex  44286
  Copyright terms: Public domain W3C validator