MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inaprc Structured version   Visualization version   GIF version

Theorem inaprc 10523
Description: An equivalent to the Tarski-Grothendieck Axiom: there is a proper class of inaccessible cardinals. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
inaprc Inacc ∉ V

Proof of Theorem inaprc
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inawina 10377 . . . . . 6 (𝑥 ∈ Inacc → 𝑥 ∈ Inaccw)
2 winaon 10375 . . . . . 6 (𝑥 ∈ Inaccw𝑥 ∈ On)
31, 2syl 17 . . . . 5 (𝑥 ∈ Inacc → 𝑥 ∈ On)
43ssriv 3921 . . . 4 Inacc ⊆ On
5 ssorduni 7606 . . . 4 (Inacc ⊆ On → Ord Inacc)
6 ordsson 7610 . . . 4 (Ord Inacc → Inacc ⊆ On)
74, 5, 6mp2b 10 . . 3 Inacc ⊆ On
8 vex 3426 . . . . . . . 8 𝑦 ∈ V
9 grothtsk 10522 . . . . . . . 8 Tarski = V
108, 9eleqtrri 2838 . . . . . . 7 𝑦 Tarski
11 eluni2 4840 . . . . . . 7 (𝑦 Tarski ↔ ∃𝑤 ∈ Tarski 𝑦𝑤)
1210, 11mpbi 229 . . . . . 6 𝑤 ∈ Tarski 𝑦𝑤
13 ne0i 4265 . . . . . . . . 9 (𝑦𝑤𝑤 ≠ ∅)
14 tskcard 10468 . . . . . . . . 9 ((𝑤 ∈ Tarski ∧ 𝑤 ≠ ∅) → (card‘𝑤) ∈ Inacc)
1513, 14sylan2 592 . . . . . . . 8 ((𝑤 ∈ Tarski ∧ 𝑦𝑤) → (card‘𝑤) ∈ Inacc)
16 tsksdom 10443 . . . . . . . . . 10 ((𝑤 ∈ Tarski ∧ 𝑦𝑤) → 𝑦𝑤)
1716adantl 481 . . . . . . . . 9 ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦𝑤)) → 𝑦𝑤)
18 tskwe2 10460 . . . . . . . . . . 11 (𝑤 ∈ Tarski → 𝑤 ∈ dom card)
1918adantr 480 . . . . . . . . . 10 ((𝑤 ∈ Tarski ∧ 𝑦𝑤) → 𝑤 ∈ dom card)
20 cardsdomel 9663 . . . . . . . . . 10 ((𝑦 ∈ On ∧ 𝑤 ∈ dom card) → (𝑦𝑤𝑦 ∈ (card‘𝑤)))
2119, 20sylan2 592 . . . . . . . . 9 ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦𝑤)) → (𝑦𝑤𝑦 ∈ (card‘𝑤)))
2217, 21mpbid 231 . . . . . . . 8 ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦𝑤)) → 𝑦 ∈ (card‘𝑤))
23 eleq2 2827 . . . . . . . . 9 (𝑧 = (card‘𝑤) → (𝑦𝑧𝑦 ∈ (card‘𝑤)))
2423rspcev 3552 . . . . . . . 8 (((card‘𝑤) ∈ Inacc ∧ 𝑦 ∈ (card‘𝑤)) → ∃𝑧 ∈ Inacc 𝑦𝑧)
2515, 22, 24syl2an2 682 . . . . . . 7 ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦𝑤)) → ∃𝑧 ∈ Inacc 𝑦𝑧)
2625rexlimdvaa 3213 . . . . . 6 (𝑦 ∈ On → (∃𝑤 ∈ Tarski 𝑦𝑤 → ∃𝑧 ∈ Inacc 𝑦𝑧))
2712, 26mpi 20 . . . . 5 (𝑦 ∈ On → ∃𝑧 ∈ Inacc 𝑦𝑧)
28 eluni2 4840 . . . . 5 (𝑦 Inacc ↔ ∃𝑧 ∈ Inacc 𝑦𝑧)
2927, 28sylibr 233 . . . 4 (𝑦 ∈ On → 𝑦 Inacc)
3029ssriv 3921 . . 3 On ⊆ Inacc
317, 30eqssi 3933 . 2 Inacc = On
32 ssonprc 7614 . . 3 (Inacc ⊆ On → (Inacc ∉ V ↔ Inacc = On))
334, 32ax-mp 5 . 2 (Inacc ∉ V ↔ Inacc = On)
3431, 33mpbir 230 1 Inacc ∉ V
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wnel 3048  wrex 3064  Vcvv 3422  wss 3883  c0 4253   cuni 4836   class class class wbr 5070  dom cdm 5580  Ord word 6250  Oncon0 6251  cfv 6418  csdm 8690  cardccrd 9624  Inaccwcwina 10369  Inacccina 10370  Tarskictsk 10435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-ac2 10150  ax-groth 10510
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-smo 8148  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-oi 9199  df-har 9246  df-r1 9453  df-card 9628  df-aleph 9629  df-cf 9630  df-acn 9631  df-ac 9803  df-wina 10371  df-ina 10372  df-tsk 10436
This theorem is referenced by:  inaex  41804
  Copyright terms: Public domain W3C validator