MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inaprc Structured version   Visualization version   GIF version

Theorem inaprc 10050
Description: An equivalent to the Tarski-Grothendieck Axiom: there is a proper class of inaccessible cardinals. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
inaprc Inacc ∉ V

Proof of Theorem inaprc
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inawina 9904 . . . . . 6 (𝑥 ∈ Inacc → 𝑥 ∈ Inaccw)
2 winaon 9902 . . . . . 6 (𝑥 ∈ Inaccw𝑥 ∈ On)
31, 2syl 17 . . . . 5 (𝑥 ∈ Inacc → 𝑥 ∈ On)
43ssriv 3856 . . . 4 Inacc ⊆ On
5 ssorduni 7310 . . . 4 (Inacc ⊆ On → Ord Inacc)
6 ordsson 7314 . . . 4 (Ord Inacc → Inacc ⊆ On)
74, 5, 6mp2b 10 . . 3 Inacc ⊆ On
8 vex 3412 . . . . . . . 8 𝑦 ∈ V
9 grothtsk 10049 . . . . . . . 8 Tarski = V
108, 9eleqtrri 2859 . . . . . . 7 𝑦 Tarski
11 eluni2 4710 . . . . . . 7 (𝑦 Tarski ↔ ∃𝑤 ∈ Tarski 𝑦𝑤)
1210, 11mpbi 222 . . . . . 6 𝑤 ∈ Tarski 𝑦𝑤
13 ne0i 4180 . . . . . . . . 9 (𝑦𝑤𝑤 ≠ ∅)
14 tskcard 9995 . . . . . . . . 9 ((𝑤 ∈ Tarski ∧ 𝑤 ≠ ∅) → (card‘𝑤) ∈ Inacc)
1513, 14sylan2 583 . . . . . . . 8 ((𝑤 ∈ Tarski ∧ 𝑦𝑤) → (card‘𝑤) ∈ Inacc)
16 tsksdom 9970 . . . . . . . . . 10 ((𝑤 ∈ Tarski ∧ 𝑦𝑤) → 𝑦𝑤)
1716adantl 474 . . . . . . . . 9 ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦𝑤)) → 𝑦𝑤)
18 tskwe2 9987 . . . . . . . . . . 11 (𝑤 ∈ Tarski → 𝑤 ∈ dom card)
1918adantr 473 . . . . . . . . . 10 ((𝑤 ∈ Tarski ∧ 𝑦𝑤) → 𝑤 ∈ dom card)
20 cardsdomel 9191 . . . . . . . . . 10 ((𝑦 ∈ On ∧ 𝑤 ∈ dom card) → (𝑦𝑤𝑦 ∈ (card‘𝑤)))
2119, 20sylan2 583 . . . . . . . . 9 ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦𝑤)) → (𝑦𝑤𝑦 ∈ (card‘𝑤)))
2217, 21mpbid 224 . . . . . . . 8 ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦𝑤)) → 𝑦 ∈ (card‘𝑤))
23 eleq2 2848 . . . . . . . . 9 (𝑧 = (card‘𝑤) → (𝑦𝑧𝑦 ∈ (card‘𝑤)))
2423rspcev 3529 . . . . . . . 8 (((card‘𝑤) ∈ Inacc ∧ 𝑦 ∈ (card‘𝑤)) → ∃𝑧 ∈ Inacc 𝑦𝑧)
2515, 22, 24syl2an2 673 . . . . . . 7 ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦𝑤)) → ∃𝑧 ∈ Inacc 𝑦𝑧)
2625rexlimdvaa 3224 . . . . . 6 (𝑦 ∈ On → (∃𝑤 ∈ Tarski 𝑦𝑤 → ∃𝑧 ∈ Inacc 𝑦𝑧))
2712, 26mpi 20 . . . . 5 (𝑦 ∈ On → ∃𝑧 ∈ Inacc 𝑦𝑧)
28 eluni2 4710 . . . . 5 (𝑦 Inacc ↔ ∃𝑧 ∈ Inacc 𝑦𝑧)
2927, 28sylibr 226 . . . 4 (𝑦 ∈ On → 𝑦 Inacc)
3029ssriv 3856 . . 3 On ⊆ Inacc
317, 30eqssi 3868 . 2 Inacc = On
32 ssonprc 7317 . . 3 (Inacc ⊆ On → (Inacc ∉ V ↔ Inacc = On))
334, 32ax-mp 5 . 2 (Inacc ∉ V ↔ Inacc = On)
3431, 33mpbir 223 1 Inacc ∉ V
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 387   = wceq 1507  wcel 2050  wne 2961  wnel 3067  wrex 3083  Vcvv 3409  wss 3823  c0 4172   cuni 4706   class class class wbr 4923  dom cdm 5401  Ord word 6022  Oncon0 6023  cfv 6182  csdm 8299  cardccrd 9152  Inaccwcwina 9896  Inacccina 9897  Tarskictsk 9962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-inf2 8892  ax-ac2 9677  ax-groth 10037
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-iin 4789  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-se 5361  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7495  df-2nd 7496  df-wrecs 7744  df-smo 7781  df-recs 7806  df-rdg 7844  df-1o 7899  df-2o 7900  df-oadd 7903  df-er 8083  df-map 8202  df-ixp 8254  df-en 8301  df-dom 8302  df-sdom 8303  df-fin 8304  df-oi 8763  df-har 8811  df-r1 8981  df-card 9156  df-aleph 9157  df-cf 9158  df-acn 9159  df-ac 9330  df-wina 9898  df-ina 9899  df-tsk 9963
This theorem is referenced by:  inaex  40008
  Copyright terms: Public domain W3C validator