![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inaprc | Structured version Visualization version GIF version |
Description: An equivalent to the Tarski-Grothendieck Axiom: there is a proper class of inaccessible cardinals. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
inaprc | ⊢ Inacc ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inawina 9904 | . . . . . 6 ⊢ (𝑥 ∈ Inacc → 𝑥 ∈ Inaccw) | |
2 | winaon 9902 | . . . . . 6 ⊢ (𝑥 ∈ Inaccw → 𝑥 ∈ On) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ Inacc → 𝑥 ∈ On) |
4 | 3 | ssriv 3856 | . . . 4 ⊢ Inacc ⊆ On |
5 | ssorduni 7310 | . . . 4 ⊢ (Inacc ⊆ On → Ord ∪ Inacc) | |
6 | ordsson 7314 | . . . 4 ⊢ (Ord ∪ Inacc → ∪ Inacc ⊆ On) | |
7 | 4, 5, 6 | mp2b 10 | . . 3 ⊢ ∪ Inacc ⊆ On |
8 | vex 3412 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
9 | grothtsk 10049 | . . . . . . . 8 ⊢ ∪ Tarski = V | |
10 | 8, 9 | eleqtrri 2859 | . . . . . . 7 ⊢ 𝑦 ∈ ∪ Tarski |
11 | eluni2 4710 | . . . . . . 7 ⊢ (𝑦 ∈ ∪ Tarski ↔ ∃𝑤 ∈ Tarski 𝑦 ∈ 𝑤) | |
12 | 10, 11 | mpbi 222 | . . . . . 6 ⊢ ∃𝑤 ∈ Tarski 𝑦 ∈ 𝑤 |
13 | ne0i 4180 | . . . . . . . . 9 ⊢ (𝑦 ∈ 𝑤 → 𝑤 ≠ ∅) | |
14 | tskcard 9995 | . . . . . . . . 9 ⊢ ((𝑤 ∈ Tarski ∧ 𝑤 ≠ ∅) → (card‘𝑤) ∈ Inacc) | |
15 | 13, 14 | sylan2 583 | . . . . . . . 8 ⊢ ((𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤) → (card‘𝑤) ∈ Inacc) |
16 | tsksdom 9970 | . . . . . . . . . 10 ⊢ ((𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤) → 𝑦 ≺ 𝑤) | |
17 | 16 | adantl 474 | . . . . . . . . 9 ⊢ ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤)) → 𝑦 ≺ 𝑤) |
18 | tskwe2 9987 | . . . . . . . . . . 11 ⊢ (𝑤 ∈ Tarski → 𝑤 ∈ dom card) | |
19 | 18 | adantr 473 | . . . . . . . . . 10 ⊢ ((𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤) → 𝑤 ∈ dom card) |
20 | cardsdomel 9191 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ On ∧ 𝑤 ∈ dom card) → (𝑦 ≺ 𝑤 ↔ 𝑦 ∈ (card‘𝑤))) | |
21 | 19, 20 | sylan2 583 | . . . . . . . . 9 ⊢ ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤)) → (𝑦 ≺ 𝑤 ↔ 𝑦 ∈ (card‘𝑤))) |
22 | 17, 21 | mpbid 224 | . . . . . . . 8 ⊢ ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤)) → 𝑦 ∈ (card‘𝑤)) |
23 | eleq2 2848 | . . . . . . . . 9 ⊢ (𝑧 = (card‘𝑤) → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ (card‘𝑤))) | |
24 | 23 | rspcev 3529 | . . . . . . . 8 ⊢ (((card‘𝑤) ∈ Inacc ∧ 𝑦 ∈ (card‘𝑤)) → ∃𝑧 ∈ Inacc 𝑦 ∈ 𝑧) |
25 | 15, 22, 24 | syl2an2 673 | . . . . . . 7 ⊢ ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤)) → ∃𝑧 ∈ Inacc 𝑦 ∈ 𝑧) |
26 | 25 | rexlimdvaa 3224 | . . . . . 6 ⊢ (𝑦 ∈ On → (∃𝑤 ∈ Tarski 𝑦 ∈ 𝑤 → ∃𝑧 ∈ Inacc 𝑦 ∈ 𝑧)) |
27 | 12, 26 | mpi 20 | . . . . 5 ⊢ (𝑦 ∈ On → ∃𝑧 ∈ Inacc 𝑦 ∈ 𝑧) |
28 | eluni2 4710 | . . . . 5 ⊢ (𝑦 ∈ ∪ Inacc ↔ ∃𝑧 ∈ Inacc 𝑦 ∈ 𝑧) | |
29 | 27, 28 | sylibr 226 | . . . 4 ⊢ (𝑦 ∈ On → 𝑦 ∈ ∪ Inacc) |
30 | 29 | ssriv 3856 | . . 3 ⊢ On ⊆ ∪ Inacc |
31 | 7, 30 | eqssi 3868 | . 2 ⊢ ∪ Inacc = On |
32 | ssonprc 7317 | . . 3 ⊢ (Inacc ⊆ On → (Inacc ∉ V ↔ ∪ Inacc = On)) | |
33 | 4, 32 | ax-mp 5 | . 2 ⊢ (Inacc ∉ V ↔ ∪ Inacc = On) |
34 | 31, 33 | mpbir 223 | 1 ⊢ Inacc ∉ V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ≠ wne 2961 ∉ wnel 3067 ∃wrex 3083 Vcvv 3409 ⊆ wss 3823 ∅c0 4172 ∪ cuni 4706 class class class wbr 4923 dom cdm 5401 Ord word 6022 Oncon0 6023 ‘cfv 6182 ≺ csdm 8299 cardccrd 9152 Inaccwcwina 9896 Inacccina 9897 Tarskictsk 9962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-inf2 8892 ax-ac2 9677 ax-groth 10037 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-iin 4789 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5306 df-eprel 5311 df-po 5320 df-so 5321 df-fr 5360 df-se 5361 df-we 5362 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-isom 6191 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7495 df-2nd 7496 df-wrecs 7744 df-smo 7781 df-recs 7806 df-rdg 7844 df-1o 7899 df-2o 7900 df-oadd 7903 df-er 8083 df-map 8202 df-ixp 8254 df-en 8301 df-dom 8302 df-sdom 8303 df-fin 8304 df-oi 8763 df-har 8811 df-r1 8981 df-card 9156 df-aleph 9157 df-cf 9158 df-acn 9159 df-ac 9330 df-wina 9898 df-ina 9899 df-tsk 9963 |
This theorem is referenced by: inaex 40008 |
Copyright terms: Public domain | W3C validator |