| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inaprc | Structured version Visualization version GIF version | ||
| Description: An equivalent to the Tarski-Grothendieck Axiom: there is a proper class of inaccessible cardinals. (Contributed by Mario Carneiro, 9-Jun-2013.) |
| Ref | Expression |
|---|---|
| inaprc | ⊢ Inacc ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inawina 10650 | . . . . . 6 ⊢ (𝑥 ∈ Inacc → 𝑥 ∈ Inaccw) | |
| 2 | winaon 10648 | . . . . . 6 ⊢ (𝑥 ∈ Inaccw → 𝑥 ∈ On) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ Inacc → 𝑥 ∈ On) |
| 4 | 3 | ssriv 3953 | . . . 4 ⊢ Inacc ⊆ On |
| 5 | ssorduni 7758 | . . . 4 ⊢ (Inacc ⊆ On → Ord ∪ Inacc) | |
| 6 | ordsson 7762 | . . . 4 ⊢ (Ord ∪ Inacc → ∪ Inacc ⊆ On) | |
| 7 | 4, 5, 6 | mp2b 10 | . . 3 ⊢ ∪ Inacc ⊆ On |
| 8 | vex 3454 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 9 | grothtsk 10795 | . . . . . . . 8 ⊢ ∪ Tarski = V | |
| 10 | 8, 9 | eleqtrri 2828 | . . . . . . 7 ⊢ 𝑦 ∈ ∪ Tarski |
| 11 | eluni2 4878 | . . . . . . 7 ⊢ (𝑦 ∈ ∪ Tarski ↔ ∃𝑤 ∈ Tarski 𝑦 ∈ 𝑤) | |
| 12 | 10, 11 | mpbi 230 | . . . . . 6 ⊢ ∃𝑤 ∈ Tarski 𝑦 ∈ 𝑤 |
| 13 | ne0i 4307 | . . . . . . . . 9 ⊢ (𝑦 ∈ 𝑤 → 𝑤 ≠ ∅) | |
| 14 | tskcard 10741 | . . . . . . . . 9 ⊢ ((𝑤 ∈ Tarski ∧ 𝑤 ≠ ∅) → (card‘𝑤) ∈ Inacc) | |
| 15 | 13, 14 | sylan2 593 | . . . . . . . 8 ⊢ ((𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤) → (card‘𝑤) ∈ Inacc) |
| 16 | tsksdom 10716 | . . . . . . . . . 10 ⊢ ((𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤) → 𝑦 ≺ 𝑤) | |
| 17 | 16 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤)) → 𝑦 ≺ 𝑤) |
| 18 | tskwe2 10733 | . . . . . . . . . . 11 ⊢ (𝑤 ∈ Tarski → 𝑤 ∈ dom card) | |
| 19 | 18 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤) → 𝑤 ∈ dom card) |
| 20 | cardsdomel 9934 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ On ∧ 𝑤 ∈ dom card) → (𝑦 ≺ 𝑤 ↔ 𝑦 ∈ (card‘𝑤))) | |
| 21 | 19, 20 | sylan2 593 | . . . . . . . . 9 ⊢ ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤)) → (𝑦 ≺ 𝑤 ↔ 𝑦 ∈ (card‘𝑤))) |
| 22 | 17, 21 | mpbid 232 | . . . . . . . 8 ⊢ ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤)) → 𝑦 ∈ (card‘𝑤)) |
| 23 | eleq2 2818 | . . . . . . . . 9 ⊢ (𝑧 = (card‘𝑤) → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ (card‘𝑤))) | |
| 24 | 23 | rspcev 3591 | . . . . . . . 8 ⊢ (((card‘𝑤) ∈ Inacc ∧ 𝑦 ∈ (card‘𝑤)) → ∃𝑧 ∈ Inacc 𝑦 ∈ 𝑧) |
| 25 | 15, 22, 24 | syl2an2 686 | . . . . . . 7 ⊢ ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤)) → ∃𝑧 ∈ Inacc 𝑦 ∈ 𝑧) |
| 26 | 25 | rexlimdvaa 3136 | . . . . . 6 ⊢ (𝑦 ∈ On → (∃𝑤 ∈ Tarski 𝑦 ∈ 𝑤 → ∃𝑧 ∈ Inacc 𝑦 ∈ 𝑧)) |
| 27 | 12, 26 | mpi 20 | . . . . 5 ⊢ (𝑦 ∈ On → ∃𝑧 ∈ Inacc 𝑦 ∈ 𝑧) |
| 28 | eluni2 4878 | . . . . 5 ⊢ (𝑦 ∈ ∪ Inacc ↔ ∃𝑧 ∈ Inacc 𝑦 ∈ 𝑧) | |
| 29 | 27, 28 | sylibr 234 | . . . 4 ⊢ (𝑦 ∈ On → 𝑦 ∈ ∪ Inacc) |
| 30 | 29 | ssriv 3953 | . . 3 ⊢ On ⊆ ∪ Inacc |
| 31 | 7, 30 | eqssi 3966 | . 2 ⊢ ∪ Inacc = On |
| 32 | ssonprc 7766 | . . 3 ⊢ (Inacc ⊆ On → (Inacc ∉ V ↔ ∪ Inacc = On)) | |
| 33 | 4, 32 | ax-mp 5 | . 2 ⊢ (Inacc ∉ V ↔ ∪ Inacc = On) |
| 34 | 31, 33 | mpbir 231 | 1 ⊢ Inacc ∉ V |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∉ wnel 3030 ∃wrex 3054 Vcvv 3450 ⊆ wss 3917 ∅c0 4299 ∪ cuni 4874 class class class wbr 5110 dom cdm 5641 Ord word 6334 Oncon0 6335 ‘cfv 6514 ≺ csdm 8920 cardccrd 9895 Inaccwcwina 10642 Inacccina 10643 Tarskictsk 10708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-ac2 10423 ax-groth 10783 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-smo 8318 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-oi 9470 df-har 9517 df-r1 9724 df-card 9899 df-aleph 9900 df-cf 9901 df-acn 9902 df-ac 10076 df-wina 10644 df-ina 10645 df-tsk 10709 |
| This theorem is referenced by: inaex 44293 |
| Copyright terms: Public domain | W3C validator |