Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  inaprc Structured version   Visualization version   GIF version

Theorem inaprc 10310
 Description: An equivalent to the Tarski-Grothendieck Axiom: there is a proper class of inaccessible cardinals. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
inaprc Inacc ∉ V

Proof of Theorem inaprc
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inawina 10164 . . . . . 6 (𝑥 ∈ Inacc → 𝑥 ∈ Inaccw)
2 winaon 10162 . . . . . 6 (𝑥 ∈ Inaccw𝑥 ∈ On)
31, 2syl 17 . . . . 5 (𝑥 ∈ Inacc → 𝑥 ∈ On)
43ssriv 3899 . . . 4 Inacc ⊆ On
5 ssorduni 7506 . . . 4 (Inacc ⊆ On → Ord Inacc)
6 ordsson 7510 . . . 4 (Ord Inacc → Inacc ⊆ On)
74, 5, 6mp2b 10 . . 3 Inacc ⊆ On
8 vex 3414 . . . . . . . 8 𝑦 ∈ V
9 grothtsk 10309 . . . . . . . 8 Tarski = V
108, 9eleqtrri 2852 . . . . . . 7 𝑦 Tarski
11 eluni2 4806 . . . . . . 7 (𝑦 Tarski ↔ ∃𝑤 ∈ Tarski 𝑦𝑤)
1210, 11mpbi 233 . . . . . 6 𝑤 ∈ Tarski 𝑦𝑤
13 ne0i 4236 . . . . . . . . 9 (𝑦𝑤𝑤 ≠ ∅)
14 tskcard 10255 . . . . . . . . 9 ((𝑤 ∈ Tarski ∧ 𝑤 ≠ ∅) → (card‘𝑤) ∈ Inacc)
1513, 14sylan2 595 . . . . . . . 8 ((𝑤 ∈ Tarski ∧ 𝑦𝑤) → (card‘𝑤) ∈ Inacc)
16 tsksdom 10230 . . . . . . . . . 10 ((𝑤 ∈ Tarski ∧ 𝑦𝑤) → 𝑦𝑤)
1716adantl 485 . . . . . . . . 9 ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦𝑤)) → 𝑦𝑤)
18 tskwe2 10247 . . . . . . . . . . 11 (𝑤 ∈ Tarski → 𝑤 ∈ dom card)
1918adantr 484 . . . . . . . . . 10 ((𝑤 ∈ Tarski ∧ 𝑦𝑤) → 𝑤 ∈ dom card)
20 cardsdomel 9450 . . . . . . . . . 10 ((𝑦 ∈ On ∧ 𝑤 ∈ dom card) → (𝑦𝑤𝑦 ∈ (card‘𝑤)))
2119, 20sylan2 595 . . . . . . . . 9 ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦𝑤)) → (𝑦𝑤𝑦 ∈ (card‘𝑤)))
2217, 21mpbid 235 . . . . . . . 8 ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦𝑤)) → 𝑦 ∈ (card‘𝑤))
23 eleq2 2841 . . . . . . . . 9 (𝑧 = (card‘𝑤) → (𝑦𝑧𝑦 ∈ (card‘𝑤)))
2423rspcev 3544 . . . . . . . 8 (((card‘𝑤) ∈ Inacc ∧ 𝑦 ∈ (card‘𝑤)) → ∃𝑧 ∈ Inacc 𝑦𝑧)
2515, 22, 24syl2an2 685 . . . . . . 7 ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦𝑤)) → ∃𝑧 ∈ Inacc 𝑦𝑧)
2625rexlimdvaa 3210 . . . . . 6 (𝑦 ∈ On → (∃𝑤 ∈ Tarski 𝑦𝑤 → ∃𝑧 ∈ Inacc 𝑦𝑧))
2712, 26mpi 20 . . . . 5 (𝑦 ∈ On → ∃𝑧 ∈ Inacc 𝑦𝑧)
28 eluni2 4806 . . . . 5 (𝑦 Inacc ↔ ∃𝑧 ∈ Inacc 𝑦𝑧)
2927, 28sylibr 237 . . . 4 (𝑦 ∈ On → 𝑦 Inacc)
3029ssriv 3899 . . 3 On ⊆ Inacc
317, 30eqssi 3911 . 2 Inacc = On
32 ssonprc 7513 . . 3 (Inacc ⊆ On → (Inacc ∉ V ↔ Inacc = On))
334, 32ax-mp 5 . 2 (Inacc ∉ V ↔ Inacc = On)
3431, 33mpbir 234 1 Inacc ∉ V
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   = wceq 1539   ∈ wcel 2112   ≠ wne 2952   ∉ wnel 3056  ∃wrex 3072  Vcvv 3410   ⊆ wss 3861  ∅c0 4228  ∪ cuni 4802   class class class wbr 5037  dom cdm 5529  Ord word 6174  Oncon0 6175  ‘cfv 6341   ≺ csdm 8540  cardccrd 9411  Inaccwcwina 10156  Inacccina 10157  Tarskictsk 10222 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-inf2 9151  ax-ac2 9937  ax-groth 10297 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-int 4843  df-iun 4889  df-iin 4890  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-se 5489  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-isom 6350  df-riota 7115  df-ov 7160  df-oprab 7161  df-mpo 7162  df-om 7587  df-1st 7700  df-2nd 7701  df-wrecs 7964  df-smo 8000  df-recs 8025  df-rdg 8063  df-1o 8119  df-2o 8120  df-er 8306  df-map 8425  df-ixp 8494  df-en 8542  df-dom 8543  df-sdom 8544  df-fin 8545  df-oi 9021  df-har 9068  df-r1 9240  df-card 9415  df-aleph 9416  df-cf 9417  df-acn 9418  df-ac 9590  df-wina 10158  df-ina 10159  df-tsk 10223 This theorem is referenced by:  inaex  41424
 Copyright terms: Public domain W3C validator