MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inaprc Structured version   Visualization version   GIF version

Theorem inaprc 10905
Description: An equivalent to the Tarski-Grothendieck Axiom: there is a proper class of inaccessible cardinals. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
inaprc Inacc ∉ V

Proof of Theorem inaprc
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inawina 10759 . . . . . 6 (𝑥 ∈ Inacc → 𝑥 ∈ Inaccw)
2 winaon 10757 . . . . . 6 (𝑥 ∈ Inaccw𝑥 ∈ On)
31, 2syl 17 . . . . 5 (𝑥 ∈ Inacc → 𝑥 ∈ On)
43ssriv 4012 . . . 4 Inacc ⊆ On
5 ssorduni 7814 . . . 4 (Inacc ⊆ On → Ord Inacc)
6 ordsson 7818 . . . 4 (Ord Inacc → Inacc ⊆ On)
74, 5, 6mp2b 10 . . 3 Inacc ⊆ On
8 vex 3492 . . . . . . . 8 𝑦 ∈ V
9 grothtsk 10904 . . . . . . . 8 Tarski = V
108, 9eleqtrri 2843 . . . . . . 7 𝑦 Tarski
11 eluni2 4935 . . . . . . 7 (𝑦 Tarski ↔ ∃𝑤 ∈ Tarski 𝑦𝑤)
1210, 11mpbi 230 . . . . . 6 𝑤 ∈ Tarski 𝑦𝑤
13 ne0i 4364 . . . . . . . . 9 (𝑦𝑤𝑤 ≠ ∅)
14 tskcard 10850 . . . . . . . . 9 ((𝑤 ∈ Tarski ∧ 𝑤 ≠ ∅) → (card‘𝑤) ∈ Inacc)
1513, 14sylan2 592 . . . . . . . 8 ((𝑤 ∈ Tarski ∧ 𝑦𝑤) → (card‘𝑤) ∈ Inacc)
16 tsksdom 10825 . . . . . . . . . 10 ((𝑤 ∈ Tarski ∧ 𝑦𝑤) → 𝑦𝑤)
1716adantl 481 . . . . . . . . 9 ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦𝑤)) → 𝑦𝑤)
18 tskwe2 10842 . . . . . . . . . . 11 (𝑤 ∈ Tarski → 𝑤 ∈ dom card)
1918adantr 480 . . . . . . . . . 10 ((𝑤 ∈ Tarski ∧ 𝑦𝑤) → 𝑤 ∈ dom card)
20 cardsdomel 10043 . . . . . . . . . 10 ((𝑦 ∈ On ∧ 𝑤 ∈ dom card) → (𝑦𝑤𝑦 ∈ (card‘𝑤)))
2119, 20sylan2 592 . . . . . . . . 9 ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦𝑤)) → (𝑦𝑤𝑦 ∈ (card‘𝑤)))
2217, 21mpbid 232 . . . . . . . 8 ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦𝑤)) → 𝑦 ∈ (card‘𝑤))
23 eleq2 2833 . . . . . . . . 9 (𝑧 = (card‘𝑤) → (𝑦𝑧𝑦 ∈ (card‘𝑤)))
2423rspcev 3635 . . . . . . . 8 (((card‘𝑤) ∈ Inacc ∧ 𝑦 ∈ (card‘𝑤)) → ∃𝑧 ∈ Inacc 𝑦𝑧)
2515, 22, 24syl2an2 685 . . . . . . 7 ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦𝑤)) → ∃𝑧 ∈ Inacc 𝑦𝑧)
2625rexlimdvaa 3162 . . . . . 6 (𝑦 ∈ On → (∃𝑤 ∈ Tarski 𝑦𝑤 → ∃𝑧 ∈ Inacc 𝑦𝑧))
2712, 26mpi 20 . . . . 5 (𝑦 ∈ On → ∃𝑧 ∈ Inacc 𝑦𝑧)
28 eluni2 4935 . . . . 5 (𝑦 Inacc ↔ ∃𝑧 ∈ Inacc 𝑦𝑧)
2927, 28sylibr 234 . . . 4 (𝑦 ∈ On → 𝑦 Inacc)
3029ssriv 4012 . . 3 On ⊆ Inacc
317, 30eqssi 4025 . 2 Inacc = On
32 ssonprc 7823 . . 3 (Inacc ⊆ On → (Inacc ∉ V ↔ Inacc = On))
334, 32ax-mp 5 . 2 (Inacc ∉ V ↔ Inacc = On)
3431, 33mpbir 231 1 Inacc ∉ V
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wnel 3052  wrex 3076  Vcvv 3488  wss 3976  c0 4352   cuni 4931   class class class wbr 5166  dom cdm 5700  Ord word 6394  Oncon0 6395  cfv 6573  csdm 9002  cardccrd 10004  Inaccwcwina 10751  Inacccina 10752  Tarskictsk 10817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-ac2 10532  ax-groth 10892
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-smo 8402  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-oi 9579  df-har 9626  df-r1 9833  df-card 10008  df-aleph 10009  df-cf 10010  df-acn 10011  df-ac 10185  df-wina 10753  df-ina 10754  df-tsk 10818
This theorem is referenced by:  inaex  44266
  Copyright terms: Public domain W3C validator