| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grutsk | Structured version Visualization version GIF version | ||
| Description: Grothendieck universes are the same as transitive Tarski classes. (The proof in the forward direction requires Foundation.) (Contributed by Mario Carneiro, 24-Jun-2013.) |
| Ref | Expression |
|---|---|
| grutsk | ⊢ Univ = {𝑥 ∈ Tarski ∣ Tr 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0tsk 10668 | . . . . . . . 8 ⊢ ∅ ∈ Tarski | |
| 2 | eleq1 2816 | . . . . . . . 8 ⊢ (𝑦 = ∅ → (𝑦 ∈ Tarski ↔ ∅ ∈ Tarski)) | |
| 3 | 1, 2 | mpbiri 258 | . . . . . . 7 ⊢ (𝑦 = ∅ → 𝑦 ∈ Tarski) |
| 4 | 3 | a1i 11 | . . . . . 6 ⊢ (𝑦 ∈ Univ → (𝑦 = ∅ → 𝑦 ∈ Tarski)) |
| 5 | vex 3442 | . . . . . . . . . . 11 ⊢ 𝑦 ∈ V | |
| 6 | unir1 9728 | . . . . . . . . . . 11 ⊢ ∪ (𝑅1 “ On) = V | |
| 7 | 5, 6 | eleqtrri 2827 | . . . . . . . . . 10 ⊢ 𝑦 ∈ ∪ (𝑅1 “ On) |
| 8 | eqid 2729 | . . . . . . . . . . 11 ⊢ (𝑦 ∩ On) = (𝑦 ∩ On) | |
| 9 | 8 | grur1 10733 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ Univ ∧ 𝑦 ∈ ∪ (𝑅1 “ On)) → 𝑦 = (𝑅1‘(𝑦 ∩ On))) |
| 10 | 7, 9 | mpan2 691 | . . . . . . . . 9 ⊢ (𝑦 ∈ Univ → 𝑦 = (𝑅1‘(𝑦 ∩ On))) |
| 11 | 10 | adantr 480 | . . . . . . . 8 ⊢ ((𝑦 ∈ Univ ∧ 𝑦 ≠ ∅) → 𝑦 = (𝑅1‘(𝑦 ∩ On))) |
| 12 | 8 | gruina 10731 | . . . . . . . . 9 ⊢ ((𝑦 ∈ Univ ∧ 𝑦 ≠ ∅) → (𝑦 ∩ On) ∈ Inacc) |
| 13 | inatsk 10691 | . . . . . . . . 9 ⊢ ((𝑦 ∩ On) ∈ Inacc → (𝑅1‘(𝑦 ∩ On)) ∈ Tarski) | |
| 14 | 12, 13 | syl 17 | . . . . . . . 8 ⊢ ((𝑦 ∈ Univ ∧ 𝑦 ≠ ∅) → (𝑅1‘(𝑦 ∩ On)) ∈ Tarski) |
| 15 | 11, 14 | eqeltrd 2828 | . . . . . . 7 ⊢ ((𝑦 ∈ Univ ∧ 𝑦 ≠ ∅) → 𝑦 ∈ Tarski) |
| 16 | 15 | ex 412 | . . . . . 6 ⊢ (𝑦 ∈ Univ → (𝑦 ≠ ∅ → 𝑦 ∈ Tarski)) |
| 17 | 4, 16 | pm2.61dne 3011 | . . . . 5 ⊢ (𝑦 ∈ Univ → 𝑦 ∈ Tarski) |
| 18 | grutr 10706 | . . . . 5 ⊢ (𝑦 ∈ Univ → Tr 𝑦) | |
| 19 | 17, 18 | jca 511 | . . . 4 ⊢ (𝑦 ∈ Univ → (𝑦 ∈ Tarski ∧ Tr 𝑦)) |
| 20 | grutsk1 10734 | . . . 4 ⊢ ((𝑦 ∈ Tarski ∧ Tr 𝑦) → 𝑦 ∈ Univ) | |
| 21 | 19, 20 | impbii 209 | . . 3 ⊢ (𝑦 ∈ Univ ↔ (𝑦 ∈ Tarski ∧ Tr 𝑦)) |
| 22 | treq 5209 | . . . 4 ⊢ (𝑥 = 𝑦 → (Tr 𝑥 ↔ Tr 𝑦)) | |
| 23 | 22 | elrab 3650 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ Tarski ∣ Tr 𝑥} ↔ (𝑦 ∈ Tarski ∧ Tr 𝑦)) |
| 24 | 21, 23 | bitr4i 278 | . 2 ⊢ (𝑦 ∈ Univ ↔ 𝑦 ∈ {𝑥 ∈ Tarski ∣ Tr 𝑥}) |
| 25 | 24 | eqriv 2726 | 1 ⊢ Univ = {𝑥 ∈ Tarski ∣ Tr 𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3396 Vcvv 3438 ∩ cin 3904 ∅c0 4286 ∪ cuni 4861 Tr wtr 5202 “ cima 5626 Oncon0 6311 ‘cfv 6486 𝑅1cr1 9677 Inacccina 10596 Tarskictsk 10661 Univcgru 10703 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-reg 9503 ax-inf2 9556 ax-ac2 10376 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-smo 8276 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-oi 9421 df-har 9468 df-tc 9652 df-r1 9679 df-rank 9680 df-card 9854 df-aleph 9855 df-cf 9856 df-acn 9857 df-ac 10029 df-wina 10597 df-ina 10598 df-tsk 10662 df-gru 10704 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |