MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grutsk Structured version   Visualization version   GIF version

Theorem grutsk 10237
Description: Grothendieck universes are the same as transitive Tarski classes. (The proof in the forward direction requires Foundation.) (Contributed by Mario Carneiro, 24-Jun-2013.)
Assertion
Ref Expression
grutsk Univ = {𝑥 ∈ Tarski ∣ Tr 𝑥}

Proof of Theorem grutsk
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0tsk 10170 . . . . . . . 8 ∅ ∈ Tarski
2 eleq1 2880 . . . . . . . 8 (𝑦 = ∅ → (𝑦 ∈ Tarski ↔ ∅ ∈ Tarski))
31, 2mpbiri 261 . . . . . . 7 (𝑦 = ∅ → 𝑦 ∈ Tarski)
43a1i 11 . . . . . 6 (𝑦 ∈ Univ → (𝑦 = ∅ → 𝑦 ∈ Tarski))
5 vex 3447 . . . . . . . . . . 11 𝑦 ∈ V
6 unir1 9230 . . . . . . . . . . 11 (𝑅1 “ On) = V
75, 6eleqtrri 2892 . . . . . . . . . 10 𝑦 (𝑅1 “ On)
8 eqid 2801 . . . . . . . . . . 11 (𝑦 ∩ On) = (𝑦 ∩ On)
98grur1 10235 . . . . . . . . . 10 ((𝑦 ∈ Univ ∧ 𝑦 (𝑅1 “ On)) → 𝑦 = (𝑅1‘(𝑦 ∩ On)))
107, 9mpan2 690 . . . . . . . . 9 (𝑦 ∈ Univ → 𝑦 = (𝑅1‘(𝑦 ∩ On)))
1110adantr 484 . . . . . . . 8 ((𝑦 ∈ Univ ∧ 𝑦 ≠ ∅) → 𝑦 = (𝑅1‘(𝑦 ∩ On)))
128gruina 10233 . . . . . . . . 9 ((𝑦 ∈ Univ ∧ 𝑦 ≠ ∅) → (𝑦 ∩ On) ∈ Inacc)
13 inatsk 10193 . . . . . . . . 9 ((𝑦 ∩ On) ∈ Inacc → (𝑅1‘(𝑦 ∩ On)) ∈ Tarski)
1412, 13syl 17 . . . . . . . 8 ((𝑦 ∈ Univ ∧ 𝑦 ≠ ∅) → (𝑅1‘(𝑦 ∩ On)) ∈ Tarski)
1511, 14eqeltrd 2893 . . . . . . 7 ((𝑦 ∈ Univ ∧ 𝑦 ≠ ∅) → 𝑦 ∈ Tarski)
1615ex 416 . . . . . 6 (𝑦 ∈ Univ → (𝑦 ≠ ∅ → 𝑦 ∈ Tarski))
174, 16pm2.61dne 3076 . . . . 5 (𝑦 ∈ Univ → 𝑦 ∈ Tarski)
18 grutr 10208 . . . . 5 (𝑦 ∈ Univ → Tr 𝑦)
1917, 18jca 515 . . . 4 (𝑦 ∈ Univ → (𝑦 ∈ Tarski ∧ Tr 𝑦))
20 grutsk1 10236 . . . 4 ((𝑦 ∈ Tarski ∧ Tr 𝑦) → 𝑦 ∈ Univ)
2119, 20impbii 212 . . 3 (𝑦 ∈ Univ ↔ (𝑦 ∈ Tarski ∧ Tr 𝑦))
22 treq 5145 . . . 4 (𝑥 = 𝑦 → (Tr 𝑥 ↔ Tr 𝑦))
2322elrab 3631 . . 3 (𝑦 ∈ {𝑥 ∈ Tarski ∣ Tr 𝑥} ↔ (𝑦 ∈ Tarski ∧ Tr 𝑦))
2421, 23bitr4i 281 . 2 (𝑦 ∈ Univ ↔ 𝑦 ∈ {𝑥 ∈ Tarski ∣ Tr 𝑥})
2524eqriv 2798 1 Univ = {𝑥 ∈ Tarski ∣ Tr 𝑥}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112  wne 2990  {crab 3113  Vcvv 3444  cin 3883  c0 4246   cuni 4803  Tr wtr 5139  cima 5526  Oncon0 6163  cfv 6328  𝑅1cr1 9179  Inacccina 10098  Tarskictsk 10163  Univcgru 10205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-reg 9044  ax-inf2 9092  ax-ac2 9878
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-smo 7970  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-oi 8962  df-har 9009  df-tc 9167  df-r1 9181  df-rank 9182  df-card 9356  df-aleph 9357  df-cf 9358  df-acn 9359  df-ac 9531  df-wina 10099  df-ina 10100  df-tsk 10164  df-gru 10206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator