![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grutsk | Structured version Visualization version GIF version |
Description: Grothendieck universes are the same as transitive Tarski classes. (The proof in the forward direction requires Foundation.) (Contributed by Mario Carneiro, 24-Jun-2013.) |
Ref | Expression |
---|---|
grutsk | ⊢ Univ = {𝑥 ∈ Tarski ∣ Tr 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0tsk 10754 | . . . . . . . 8 ⊢ ∅ ∈ Tarski | |
2 | eleq1 2819 | . . . . . . . 8 ⊢ (𝑦 = ∅ → (𝑦 ∈ Tarski ↔ ∅ ∈ Tarski)) | |
3 | 1, 2 | mpbiri 257 | . . . . . . 7 ⊢ (𝑦 = ∅ → 𝑦 ∈ Tarski) |
4 | 3 | a1i 11 | . . . . . 6 ⊢ (𝑦 ∈ Univ → (𝑦 = ∅ → 𝑦 ∈ Tarski)) |
5 | vex 3476 | . . . . . . . . . . 11 ⊢ 𝑦 ∈ V | |
6 | unir1 9812 | . . . . . . . . . . 11 ⊢ ∪ (𝑅1 “ On) = V | |
7 | 5, 6 | eleqtrri 2830 | . . . . . . . . . 10 ⊢ 𝑦 ∈ ∪ (𝑅1 “ On) |
8 | eqid 2730 | . . . . . . . . . . 11 ⊢ (𝑦 ∩ On) = (𝑦 ∩ On) | |
9 | 8 | grur1 10819 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ Univ ∧ 𝑦 ∈ ∪ (𝑅1 “ On)) → 𝑦 = (𝑅1‘(𝑦 ∩ On))) |
10 | 7, 9 | mpan2 687 | . . . . . . . . 9 ⊢ (𝑦 ∈ Univ → 𝑦 = (𝑅1‘(𝑦 ∩ On))) |
11 | 10 | adantr 479 | . . . . . . . 8 ⊢ ((𝑦 ∈ Univ ∧ 𝑦 ≠ ∅) → 𝑦 = (𝑅1‘(𝑦 ∩ On))) |
12 | 8 | gruina 10817 | . . . . . . . . 9 ⊢ ((𝑦 ∈ Univ ∧ 𝑦 ≠ ∅) → (𝑦 ∩ On) ∈ Inacc) |
13 | inatsk 10777 | . . . . . . . . 9 ⊢ ((𝑦 ∩ On) ∈ Inacc → (𝑅1‘(𝑦 ∩ On)) ∈ Tarski) | |
14 | 12, 13 | syl 17 | . . . . . . . 8 ⊢ ((𝑦 ∈ Univ ∧ 𝑦 ≠ ∅) → (𝑅1‘(𝑦 ∩ On)) ∈ Tarski) |
15 | 11, 14 | eqeltrd 2831 | . . . . . . 7 ⊢ ((𝑦 ∈ Univ ∧ 𝑦 ≠ ∅) → 𝑦 ∈ Tarski) |
16 | 15 | ex 411 | . . . . . 6 ⊢ (𝑦 ∈ Univ → (𝑦 ≠ ∅ → 𝑦 ∈ Tarski)) |
17 | 4, 16 | pm2.61dne 3026 | . . . . 5 ⊢ (𝑦 ∈ Univ → 𝑦 ∈ Tarski) |
18 | grutr 10792 | . . . . 5 ⊢ (𝑦 ∈ Univ → Tr 𝑦) | |
19 | 17, 18 | jca 510 | . . . 4 ⊢ (𝑦 ∈ Univ → (𝑦 ∈ Tarski ∧ Tr 𝑦)) |
20 | grutsk1 10820 | . . . 4 ⊢ ((𝑦 ∈ Tarski ∧ Tr 𝑦) → 𝑦 ∈ Univ) | |
21 | 19, 20 | impbii 208 | . . 3 ⊢ (𝑦 ∈ Univ ↔ (𝑦 ∈ Tarski ∧ Tr 𝑦)) |
22 | treq 5274 | . . . 4 ⊢ (𝑥 = 𝑦 → (Tr 𝑥 ↔ Tr 𝑦)) | |
23 | 22 | elrab 3684 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ Tarski ∣ Tr 𝑥} ↔ (𝑦 ∈ Tarski ∧ Tr 𝑦)) |
24 | 21, 23 | bitr4i 277 | . 2 ⊢ (𝑦 ∈ Univ ↔ 𝑦 ∈ {𝑥 ∈ Tarski ∣ Tr 𝑥}) |
25 | 24 | eqriv 2727 | 1 ⊢ Univ = {𝑥 ∈ Tarski ∣ Tr 𝑥} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ≠ wne 2938 {crab 3430 Vcvv 3472 ∩ cin 3948 ∅c0 4323 ∪ cuni 4909 Tr wtr 5266 “ cima 5680 Oncon0 6365 ‘cfv 6544 𝑅1cr1 9761 Inacccina 10682 Tarskictsk 10747 Univcgru 10789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-reg 9591 ax-inf2 9640 ax-ac2 10462 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-smo 8350 df-recs 8375 df-rdg 8414 df-1o 8470 df-2o 8471 df-er 8707 df-map 8826 df-ixp 8896 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-oi 9509 df-har 9556 df-tc 9736 df-r1 9763 df-rank 9764 df-card 9938 df-aleph 9939 df-cf 9940 df-acn 9941 df-ac 10115 df-wina 10683 df-ina 10684 df-tsk 10748 df-gru 10790 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |