| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grutsk | Structured version Visualization version GIF version | ||
| Description: Grothendieck universes are the same as transitive Tarski classes. (The proof in the forward direction requires Foundation.) (Contributed by Mario Carneiro, 24-Jun-2013.) |
| Ref | Expression |
|---|---|
| grutsk | ⊢ Univ = {𝑥 ∈ Tarski ∣ Tr 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0tsk 10653 | . . . . . . . 8 ⊢ ∅ ∈ Tarski | |
| 2 | eleq1 2821 | . . . . . . . 8 ⊢ (𝑦 = ∅ → (𝑦 ∈ Tarski ↔ ∅ ∈ Tarski)) | |
| 3 | 1, 2 | mpbiri 258 | . . . . . . 7 ⊢ (𝑦 = ∅ → 𝑦 ∈ Tarski) |
| 4 | 3 | a1i 11 | . . . . . 6 ⊢ (𝑦 ∈ Univ → (𝑦 = ∅ → 𝑦 ∈ Tarski)) |
| 5 | vex 3441 | . . . . . . . . . . 11 ⊢ 𝑦 ∈ V | |
| 6 | unir1 9713 | . . . . . . . . . . 11 ⊢ ∪ (𝑅1 “ On) = V | |
| 7 | 5, 6 | eleqtrri 2832 | . . . . . . . . . 10 ⊢ 𝑦 ∈ ∪ (𝑅1 “ On) |
| 8 | eqid 2733 | . . . . . . . . . . 11 ⊢ (𝑦 ∩ On) = (𝑦 ∩ On) | |
| 9 | 8 | grur1 10718 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ Univ ∧ 𝑦 ∈ ∪ (𝑅1 “ On)) → 𝑦 = (𝑅1‘(𝑦 ∩ On))) |
| 10 | 7, 9 | mpan2 691 | . . . . . . . . 9 ⊢ (𝑦 ∈ Univ → 𝑦 = (𝑅1‘(𝑦 ∩ On))) |
| 11 | 10 | adantr 480 | . . . . . . . 8 ⊢ ((𝑦 ∈ Univ ∧ 𝑦 ≠ ∅) → 𝑦 = (𝑅1‘(𝑦 ∩ On))) |
| 12 | 8 | gruina 10716 | . . . . . . . . 9 ⊢ ((𝑦 ∈ Univ ∧ 𝑦 ≠ ∅) → (𝑦 ∩ On) ∈ Inacc) |
| 13 | inatsk 10676 | . . . . . . . . 9 ⊢ ((𝑦 ∩ On) ∈ Inacc → (𝑅1‘(𝑦 ∩ On)) ∈ Tarski) | |
| 14 | 12, 13 | syl 17 | . . . . . . . 8 ⊢ ((𝑦 ∈ Univ ∧ 𝑦 ≠ ∅) → (𝑅1‘(𝑦 ∩ On)) ∈ Tarski) |
| 15 | 11, 14 | eqeltrd 2833 | . . . . . . 7 ⊢ ((𝑦 ∈ Univ ∧ 𝑦 ≠ ∅) → 𝑦 ∈ Tarski) |
| 16 | 15 | ex 412 | . . . . . 6 ⊢ (𝑦 ∈ Univ → (𝑦 ≠ ∅ → 𝑦 ∈ Tarski)) |
| 17 | 4, 16 | pm2.61dne 3015 | . . . . 5 ⊢ (𝑦 ∈ Univ → 𝑦 ∈ Tarski) |
| 18 | grutr 10691 | . . . . 5 ⊢ (𝑦 ∈ Univ → Tr 𝑦) | |
| 19 | 17, 18 | jca 511 | . . . 4 ⊢ (𝑦 ∈ Univ → (𝑦 ∈ Tarski ∧ Tr 𝑦)) |
| 20 | grutsk1 10719 | . . . 4 ⊢ ((𝑦 ∈ Tarski ∧ Tr 𝑦) → 𝑦 ∈ Univ) | |
| 21 | 19, 20 | impbii 209 | . . 3 ⊢ (𝑦 ∈ Univ ↔ (𝑦 ∈ Tarski ∧ Tr 𝑦)) |
| 22 | treq 5207 | . . . 4 ⊢ (𝑥 = 𝑦 → (Tr 𝑥 ↔ Tr 𝑦)) | |
| 23 | 22 | elrab 3643 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ Tarski ∣ Tr 𝑥} ↔ (𝑦 ∈ Tarski ∧ Tr 𝑦)) |
| 24 | 21, 23 | bitr4i 278 | . 2 ⊢ (𝑦 ∈ Univ ↔ 𝑦 ∈ {𝑥 ∈ Tarski ∣ Tr 𝑥}) |
| 25 | 24 | eqriv 2730 | 1 ⊢ Univ = {𝑥 ∈ Tarski ∣ Tr 𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 {crab 3396 Vcvv 3437 ∩ cin 3897 ∅c0 4282 ∪ cuni 4858 Tr wtr 5200 “ cima 5622 Oncon0 6311 ‘cfv 6486 𝑅1cr1 9662 Inacccina 10581 Tarskictsk 10646 Univcgru 10688 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-reg 9485 ax-inf2 9538 ax-ac2 10361 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-smo 8272 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-oi 9403 df-har 9450 df-tc 9632 df-r1 9664 df-rank 9665 df-card 9839 df-aleph 9840 df-cf 9841 df-acn 9842 df-ac 10014 df-wina 10582 df-ina 10583 df-tsk 10647 df-gru 10689 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |