MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grutsk Structured version   Visualization version   GIF version

Theorem grutsk 10735
Description: Grothendieck universes are the same as transitive Tarski classes. (The proof in the forward direction requires Foundation.) (Contributed by Mario Carneiro, 24-Jun-2013.)
Assertion
Ref Expression
grutsk Univ = {𝑥 ∈ Tarski ∣ Tr 𝑥}

Proof of Theorem grutsk
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0tsk 10668 . . . . . . . 8 ∅ ∈ Tarski
2 eleq1 2816 . . . . . . . 8 (𝑦 = ∅ → (𝑦 ∈ Tarski ↔ ∅ ∈ Tarski))
31, 2mpbiri 258 . . . . . . 7 (𝑦 = ∅ → 𝑦 ∈ Tarski)
43a1i 11 . . . . . 6 (𝑦 ∈ Univ → (𝑦 = ∅ → 𝑦 ∈ Tarski))
5 vex 3442 . . . . . . . . . . 11 𝑦 ∈ V
6 unir1 9728 . . . . . . . . . . 11 (𝑅1 “ On) = V
75, 6eleqtrri 2827 . . . . . . . . . 10 𝑦 (𝑅1 “ On)
8 eqid 2729 . . . . . . . . . . 11 (𝑦 ∩ On) = (𝑦 ∩ On)
98grur1 10733 . . . . . . . . . 10 ((𝑦 ∈ Univ ∧ 𝑦 (𝑅1 “ On)) → 𝑦 = (𝑅1‘(𝑦 ∩ On)))
107, 9mpan2 691 . . . . . . . . 9 (𝑦 ∈ Univ → 𝑦 = (𝑅1‘(𝑦 ∩ On)))
1110adantr 480 . . . . . . . 8 ((𝑦 ∈ Univ ∧ 𝑦 ≠ ∅) → 𝑦 = (𝑅1‘(𝑦 ∩ On)))
128gruina 10731 . . . . . . . . 9 ((𝑦 ∈ Univ ∧ 𝑦 ≠ ∅) → (𝑦 ∩ On) ∈ Inacc)
13 inatsk 10691 . . . . . . . . 9 ((𝑦 ∩ On) ∈ Inacc → (𝑅1‘(𝑦 ∩ On)) ∈ Tarski)
1412, 13syl 17 . . . . . . . 8 ((𝑦 ∈ Univ ∧ 𝑦 ≠ ∅) → (𝑅1‘(𝑦 ∩ On)) ∈ Tarski)
1511, 14eqeltrd 2828 . . . . . . 7 ((𝑦 ∈ Univ ∧ 𝑦 ≠ ∅) → 𝑦 ∈ Tarski)
1615ex 412 . . . . . 6 (𝑦 ∈ Univ → (𝑦 ≠ ∅ → 𝑦 ∈ Tarski))
174, 16pm2.61dne 3011 . . . . 5 (𝑦 ∈ Univ → 𝑦 ∈ Tarski)
18 grutr 10706 . . . . 5 (𝑦 ∈ Univ → Tr 𝑦)
1917, 18jca 511 . . . 4 (𝑦 ∈ Univ → (𝑦 ∈ Tarski ∧ Tr 𝑦))
20 grutsk1 10734 . . . 4 ((𝑦 ∈ Tarski ∧ Tr 𝑦) → 𝑦 ∈ Univ)
2119, 20impbii 209 . . 3 (𝑦 ∈ Univ ↔ (𝑦 ∈ Tarski ∧ Tr 𝑦))
22 treq 5209 . . . 4 (𝑥 = 𝑦 → (Tr 𝑥 ↔ Tr 𝑦))
2322elrab 3650 . . 3 (𝑦 ∈ {𝑥 ∈ Tarski ∣ Tr 𝑥} ↔ (𝑦 ∈ Tarski ∧ Tr 𝑦))
2421, 23bitr4i 278 . 2 (𝑦 ∈ Univ ↔ 𝑦 ∈ {𝑥 ∈ Tarski ∣ Tr 𝑥})
2524eqriv 2726 1 Univ = {𝑥 ∈ Tarski ∣ Tr 𝑥}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  {crab 3396  Vcvv 3438  cin 3904  c0 4286   cuni 4861  Tr wtr 5202  cima 5626  Oncon0 6311  cfv 6486  𝑅1cr1 9677  Inacccina 10596  Tarskictsk 10661  Univcgru 10703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-reg 9503  ax-inf2 9556  ax-ac2 10376
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-smo 8276  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-oi 9421  df-har 9468  df-tc 9652  df-r1 9679  df-rank 9680  df-card 9854  df-aleph 9855  df-cf 9856  df-acn 9857  df-ac 10029  df-wina 10597  df-ina 10598  df-tsk 10662  df-gru 10704
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator