| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grutsk | Structured version Visualization version GIF version | ||
| Description: Grothendieck universes are the same as transitive Tarski classes. (The proof in the forward direction requires Foundation.) (Contributed by Mario Carneiro, 24-Jun-2013.) |
| Ref | Expression |
|---|---|
| grutsk | ⊢ Univ = {𝑥 ∈ Tarski ∣ Tr 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0tsk 10715 | . . . . . . . 8 ⊢ ∅ ∈ Tarski | |
| 2 | eleq1 2817 | . . . . . . . 8 ⊢ (𝑦 = ∅ → (𝑦 ∈ Tarski ↔ ∅ ∈ Tarski)) | |
| 3 | 1, 2 | mpbiri 258 | . . . . . . 7 ⊢ (𝑦 = ∅ → 𝑦 ∈ Tarski) |
| 4 | 3 | a1i 11 | . . . . . 6 ⊢ (𝑦 ∈ Univ → (𝑦 = ∅ → 𝑦 ∈ Tarski)) |
| 5 | vex 3454 | . . . . . . . . . . 11 ⊢ 𝑦 ∈ V | |
| 6 | unir1 9773 | . . . . . . . . . . 11 ⊢ ∪ (𝑅1 “ On) = V | |
| 7 | 5, 6 | eleqtrri 2828 | . . . . . . . . . 10 ⊢ 𝑦 ∈ ∪ (𝑅1 “ On) |
| 8 | eqid 2730 | . . . . . . . . . . 11 ⊢ (𝑦 ∩ On) = (𝑦 ∩ On) | |
| 9 | 8 | grur1 10780 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ Univ ∧ 𝑦 ∈ ∪ (𝑅1 “ On)) → 𝑦 = (𝑅1‘(𝑦 ∩ On))) |
| 10 | 7, 9 | mpan2 691 | . . . . . . . . 9 ⊢ (𝑦 ∈ Univ → 𝑦 = (𝑅1‘(𝑦 ∩ On))) |
| 11 | 10 | adantr 480 | . . . . . . . 8 ⊢ ((𝑦 ∈ Univ ∧ 𝑦 ≠ ∅) → 𝑦 = (𝑅1‘(𝑦 ∩ On))) |
| 12 | 8 | gruina 10778 | . . . . . . . . 9 ⊢ ((𝑦 ∈ Univ ∧ 𝑦 ≠ ∅) → (𝑦 ∩ On) ∈ Inacc) |
| 13 | inatsk 10738 | . . . . . . . . 9 ⊢ ((𝑦 ∩ On) ∈ Inacc → (𝑅1‘(𝑦 ∩ On)) ∈ Tarski) | |
| 14 | 12, 13 | syl 17 | . . . . . . . 8 ⊢ ((𝑦 ∈ Univ ∧ 𝑦 ≠ ∅) → (𝑅1‘(𝑦 ∩ On)) ∈ Tarski) |
| 15 | 11, 14 | eqeltrd 2829 | . . . . . . 7 ⊢ ((𝑦 ∈ Univ ∧ 𝑦 ≠ ∅) → 𝑦 ∈ Tarski) |
| 16 | 15 | ex 412 | . . . . . 6 ⊢ (𝑦 ∈ Univ → (𝑦 ≠ ∅ → 𝑦 ∈ Tarski)) |
| 17 | 4, 16 | pm2.61dne 3012 | . . . . 5 ⊢ (𝑦 ∈ Univ → 𝑦 ∈ Tarski) |
| 18 | grutr 10753 | . . . . 5 ⊢ (𝑦 ∈ Univ → Tr 𝑦) | |
| 19 | 17, 18 | jca 511 | . . . 4 ⊢ (𝑦 ∈ Univ → (𝑦 ∈ Tarski ∧ Tr 𝑦)) |
| 20 | grutsk1 10781 | . . . 4 ⊢ ((𝑦 ∈ Tarski ∧ Tr 𝑦) → 𝑦 ∈ Univ) | |
| 21 | 19, 20 | impbii 209 | . . 3 ⊢ (𝑦 ∈ Univ ↔ (𝑦 ∈ Tarski ∧ Tr 𝑦)) |
| 22 | treq 5225 | . . . 4 ⊢ (𝑥 = 𝑦 → (Tr 𝑥 ↔ Tr 𝑦)) | |
| 23 | 22 | elrab 3662 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ Tarski ∣ Tr 𝑥} ↔ (𝑦 ∈ Tarski ∧ Tr 𝑦)) |
| 24 | 21, 23 | bitr4i 278 | . 2 ⊢ (𝑦 ∈ Univ ↔ 𝑦 ∈ {𝑥 ∈ Tarski ∣ Tr 𝑥}) |
| 25 | 24 | eqriv 2727 | 1 ⊢ Univ = {𝑥 ∈ Tarski ∣ Tr 𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 {crab 3408 Vcvv 3450 ∩ cin 3916 ∅c0 4299 ∪ cuni 4874 Tr wtr 5217 “ cima 5644 Oncon0 6335 ‘cfv 6514 𝑅1cr1 9722 Inacccina 10643 Tarskictsk 10708 Univcgru 10750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-reg 9552 ax-inf2 9601 ax-ac2 10423 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-smo 8318 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-oi 9470 df-har 9517 df-tc 9697 df-r1 9724 df-rank 9725 df-card 9899 df-aleph 9900 df-cf 9901 df-acn 9902 df-ac 10076 df-wina 10644 df-ina 10645 df-tsk 10709 df-gru 10751 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |