![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvr1 | Structured version Visualization version GIF version |
Description: A Hilbert lattice has the covering property. Proposition 1(ii) in [Kalmbach] p. 140 (and its converse). (chcv1 31339 analog.) (Contributed by NM, 17-Nov-2011.) |
Ref | Expression |
---|---|
cvr1.b | β’ π΅ = (BaseβπΎ) |
cvr1.l | β’ β€ = (leβπΎ) |
cvr1.j | β’ β¨ = (joinβπΎ) |
cvr1.c | β’ πΆ = ( β βπΎ) |
cvr1.a | β’ π΄ = (AtomsβπΎ) |
Ref | Expression |
---|---|
cvr1 | β’ ((πΎ β HL β§ π β π΅ β§ π β π΄) β (Β¬ π β€ π β ππΆ(π β¨ π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlomcmcv 37864 | . 2 β’ (πΎ β HL β (πΎ β OML β§ πΎ β CLat β§ πΎ β CvLat)) | |
2 | cvr1.b | . . 3 β’ π΅ = (BaseβπΎ) | |
3 | cvr1.l | . . 3 β’ β€ = (leβπΎ) | |
4 | cvr1.j | . . 3 β’ β¨ = (joinβπΎ) | |
5 | cvr1.c | . . 3 β’ πΆ = ( β βπΎ) | |
6 | cvr1.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
7 | 2, 3, 4, 5, 6 | cvlcvr1 37847 | . 2 β’ (((πΎ β OML β§ πΎ β CLat β§ πΎ β CvLat) β§ π β π΅ β§ π β π΄) β (Β¬ π β€ π β ππΆ(π β¨ π))) |
8 | 1, 7 | syl3an1 1164 | 1 β’ ((πΎ β HL β§ π β π΅ β§ π β π΄) β (Β¬ π β€ π β ππΆ(π β¨ π))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ w3a 1088 = wceq 1542 β wcel 2107 class class class wbr 5106 βcfv 6497 (class class class)co 7358 Basecbs 17088 lecple 17145 joincjn 18205 CLatccla 18392 OMLcoml 37683 β ccvr 37770 Atomscatm 37771 CvLatclc 37773 HLchlt 37858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-proset 18189 df-poset 18207 df-plt 18224 df-lub 18240 df-glb 18241 df-join 18242 df-meet 18243 df-p0 18319 df-lat 18326 df-clat 18393 df-oposet 37684 df-ol 37686 df-oml 37687 df-covers 37774 df-ats 37775 df-atl 37806 df-cvlat 37830 df-hlat 37859 |
This theorem is referenced by: cvr2N 37920 hlrelat3 37921 cvrval3 37922 cvrval4N 37923 cvrexchlem 37928 cvratlem 37930 cvrat3 37951 3dim0 37966 2dim 37979 1cvrjat 37984 llncvrlpln2 38066 lplnexllnN 38073 lplncvrlvol2 38124 lhp2lt 38510 |
Copyright terms: Public domain | W3C validator |