![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvr1 | Structured version Visualization version GIF version |
Description: A Hilbert lattice has the covering property. Proposition 1(ii) in [Kalmbach] p. 140 (and its converse). (chcv1 29819 analog.) (Contributed by NM, 17-Nov-2011.) |
Ref | Expression |
---|---|
cvr1.b | ⊢ 𝐵 = (Base‘𝐾) |
cvr1.l | ⊢ ≤ = (le‘𝐾) |
cvr1.j | ⊢ ∨ = (join‘𝐾) |
cvr1.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
cvr1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
cvr1 | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (¬ 𝑃 ≤ 𝑋 ↔ 𝑋𝐶(𝑋 ∨ 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlomcmcv 36044 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | |
2 | cvr1.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
3 | cvr1.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
4 | cvr1.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
5 | cvr1.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
6 | cvr1.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | 2, 3, 4, 5, 6 | cvlcvr1 36027 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (¬ 𝑃 ≤ 𝑋 ↔ 𝑋𝐶(𝑋 ∨ 𝑃))) |
8 | 1, 7 | syl3an1 1156 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (¬ 𝑃 ≤ 𝑋 ↔ 𝑋𝐶(𝑋 ∨ 𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∧ w3a 1080 = wceq 1525 ∈ wcel 2083 class class class wbr 4968 ‘cfv 6232 (class class class)co 7023 Basecbs 16316 lecple 16405 joincjn 17387 CLatccla 17550 OMLcoml 35863 ⋖ ccvr 35950 Atomscatm 35951 CvLatclc 35953 HLchlt 36038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-ral 3112 df-rex 3113 df-reu 3114 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-op 4485 df-uni 4752 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-id 5355 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-proset 17371 df-poset 17389 df-plt 17401 df-lub 17417 df-glb 17418 df-join 17419 df-meet 17420 df-p0 17482 df-lat 17489 df-clat 17551 df-oposet 35864 df-ol 35866 df-oml 35867 df-covers 35954 df-ats 35955 df-atl 35986 df-cvlat 36010 df-hlat 36039 |
This theorem is referenced by: cvr2N 36099 hlrelat3 36100 cvrval3 36101 cvrval4N 36102 cvrexchlem 36107 cvratlem 36109 cvrat3 36130 3dim0 36145 2dim 36158 1cvrjat 36163 llncvrlpln2 36245 lplnexllnN 36252 lplncvrlvol2 36303 lhp2lt 36689 |
Copyright terms: Public domain | W3C validator |