![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvr1 | Structured version Visualization version GIF version |
Description: A Hilbert lattice has the covering property. Proposition 1(ii) in [Kalmbach] p. 140 (and its converse). (chcv1 32400 analog.) (Contributed by NM, 17-Nov-2011.) |
Ref | Expression |
---|---|
cvr1.b | ⊢ 𝐵 = (Base‘𝐾) |
cvr1.l | ⊢ ≤ = (le‘𝐾) |
cvr1.j | ⊢ ∨ = (join‘𝐾) |
cvr1.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
cvr1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
cvr1 | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (¬ 𝑃 ≤ 𝑋 ↔ 𝑋𝐶(𝑋 ∨ 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlomcmcv 39352 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | |
2 | cvr1.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
3 | cvr1.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
4 | cvr1.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
5 | cvr1.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
6 | cvr1.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | 2, 3, 4, 5, 6 | cvlcvr1 39335 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (¬ 𝑃 ≤ 𝑋 ↔ 𝑋𝐶(𝑋 ∨ 𝑃))) |
8 | 1, 7 | syl3an1 1164 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (¬ 𝑃 ≤ 𝑋 ↔ 𝑋𝐶(𝑋 ∨ 𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 class class class wbr 5151 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 lecple 17314 joincjn 18378 CLatccla 18565 OMLcoml 39171 ⋖ ccvr 39258 Atomscatm 39259 CvLatclc 39261 HLchlt 39346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-proset 18361 df-poset 18380 df-plt 18397 df-lub 18413 df-glb 18414 df-join 18415 df-meet 18416 df-p0 18492 df-lat 18499 df-clat 18566 df-oposet 39172 df-ol 39174 df-oml 39175 df-covers 39262 df-ats 39263 df-atl 39294 df-cvlat 39318 df-hlat 39347 |
This theorem is referenced by: cvr2N 39408 hlrelat3 39409 cvrval3 39410 cvrval4N 39411 cvrexchlem 39416 cvratlem 39418 cvrat3 39439 3dim0 39454 2dim 39467 1cvrjat 39472 llncvrlpln2 39554 lplnexllnN 39561 lplncvrlvol2 39612 lhp2lt 39998 |
Copyright terms: Public domain | W3C validator |