| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atcvr2 | Structured version Visualization version GIF version | ||
| Description: An atom is covered by its join with a different atom. (Contributed by NM, 7-Feb-2012.) |
| Ref | Expression |
|---|---|
| atcvr1.j | ⊢ ∨ = (join‘𝐾) |
| atcvr1.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| atcvr1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| atcvr2 | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ 𝑃𝐶(𝑄 ∨ 𝑃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlomcmcv 39478 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | |
| 2 | atcvr1.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 3 | atcvr1.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 4 | atcvr1.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 2, 3, 4 | cvlatcvr2 39464 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ 𝑃𝐶(𝑄 ∨ 𝑃))) |
| 6 | 1, 5 | syl3an1 1163 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ 𝑃𝐶(𝑄 ∨ 𝑃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 class class class wbr 5095 ‘cfv 6488 (class class class)co 7354 joincjn 18221 CLatccla 18408 OMLcoml 39297 ⋖ ccvr 39384 Atomscatm 39385 CvLatclc 39387 HLchlt 39472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-proset 18204 df-poset 18223 df-plt 18238 df-lub 18254 df-glb 18255 df-join 18256 df-meet 18257 df-p0 18333 df-lat 18342 df-clat 18409 df-oposet 39298 df-ol 39300 df-oml 39301 df-covers 39388 df-ats 39389 df-atl 39420 df-cvlat 39444 df-hlat 39473 |
| This theorem is referenced by: atcvrj2b 39554 |
| Copyright terms: Public domain | W3C validator |