Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > atcvr1 | Structured version Visualization version GIF version |
Description: An atom is covered by its join with a different atom. (Contributed by NM, 7-Feb-2012.) |
Ref | Expression |
---|---|
atcvr1.j | ⊢ ∨ = (join‘𝐾) |
atcvr1.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
atcvr1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atcvr1 | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ 𝑃𝐶(𝑃 ∨ 𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlomcmcv 37134 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | |
2 | atcvr1.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | atcvr1.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
4 | atcvr1.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 2, 3, 4 | cvlatcvr1 37119 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ 𝑃𝐶(𝑃 ∨ 𝑄))) |
6 | 1, 5 | syl3an1 1165 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ 𝑃𝐶(𝑃 ∨ 𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ w3a 1089 = wceq 1543 ∈ wcel 2111 ≠ wne 2941 class class class wbr 5068 ‘cfv 6398 (class class class)co 7232 joincjn 17843 CLatccla 18029 OMLcoml 36953 ⋖ ccvr 37040 Atomscatm 37041 CvLatclc 37043 HLchlt 37128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5194 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-op 4563 df-uni 4835 df-iun 4921 df-br 5069 df-opab 5131 df-mpt 5151 df-id 5470 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-riota 7189 df-ov 7235 df-oprab 7236 df-proset 17827 df-poset 17845 df-plt 17861 df-lub 17877 df-glb 17878 df-join 17879 df-meet 17880 df-p0 17956 df-lat 17963 df-clat 18030 df-oposet 36954 df-ol 36956 df-oml 36957 df-covers 37044 df-ats 37045 df-atl 37076 df-cvlat 37100 df-hlat 37129 |
This theorem is referenced by: atcvr0eq 37204 lnnat 37205 atlt 37215 2atlt 37217 3dim0 37235 cdleme3b 38007 cdleme3c 38008 cdleme7e 38025 |
Copyright terms: Public domain | W3C validator |