| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idfn | Structured version Visualization version GIF version | ||
| Description: The identity relation is a function on the universal class. See also funi 6578. (Contributed by BJ, 23-Dec-2023.) |
| Ref | Expression |
|---|---|
| idfn | ⊢ I Fn V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funi 6578 | . 2 ⊢ Fun I | |
| 2 | dmi 5912 | . 2 ⊢ dom I = V | |
| 3 | df-fn 6544 | . 2 ⊢ ( I Fn V ↔ (Fun I ∧ dom I = V)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ I Fn V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 Vcvv 3463 I cid 5557 dom cdm 5665 Fun wfun 6535 Fn wfn 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-fun 6543 df-fn 6544 |
| This theorem is referenced by: fnresi 6677 |
| Copyright terms: Public domain | W3C validator |