MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idfn Structured version   Visualization version   GIF version

Theorem idfn 6704
Description: The identity relation is a function on the universal class. See also funi 6606. (Contributed by BJ, 23-Dec-2023.)
Assertion
Ref Expression
idfn I Fn V

Proof of Theorem idfn
StepHypRef Expression
1 funi 6606 . 2 Fun I
2 dmi 5939 . 2 dom I = V
3 df-fn 6572 . 2 ( I Fn V ↔ (Fun I ∧ dom I = V))
41, 2, 3mpbir2an 711 1 I Fn V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3481   I cid 5586  dom cdm 5693  Fun wfun 6563   Fn wfn 6564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-br 5152  df-opab 5214  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-fun 6571  df-fn 6572
This theorem is referenced by:  fnresi  6705
  Copyright terms: Public domain W3C validator