MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idfn Structured version   Visualization version   GIF version

Theorem idfn 6556
Description: The identity relation is a function on the universal class. See also funi 6462. (Contributed by BJ, 23-Dec-2023.)
Assertion
Ref Expression
idfn I Fn V

Proof of Theorem idfn
StepHypRef Expression
1 funi 6462 . 2 Fun I
2 dmi 5827 . 2 dom I = V
3 df-fn 6433 . 2 ( I Fn V ↔ (Fun I ∧ dom I = V))
41, 2, 3mpbir2an 707 1 I Fn V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  Vcvv 3430   I cid 5487  dom cdm 5588  Fun wfun 6424   Fn wfn 6425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-fun 6432  df-fn 6433
This theorem is referenced by:  fnresi  6557
  Copyright terms: Public domain W3C validator