| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idfn | Structured version Visualization version GIF version | ||
| Description: The identity relation is a function on the universal class. See also funi 6548. (Contributed by BJ, 23-Dec-2023.) |
| Ref | Expression |
|---|---|
| idfn | ⊢ I Fn V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funi 6548 | . 2 ⊢ Fun I | |
| 2 | dmi 5885 | . 2 ⊢ dom I = V | |
| 3 | df-fn 6514 | . 2 ⊢ ( I Fn V ↔ (Fun I ∧ dom I = V)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ I Fn V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3447 I cid 5532 dom cdm 5638 Fun wfun 6505 Fn wfn 6506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-fun 6513 df-fn 6514 |
| This theorem is referenced by: fnresi 6647 |
| Copyright terms: Public domain | W3C validator |