Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > idfn | Structured version Visualization version GIF version |
Description: The identity relation is a function on the universal class. See also funi 6462. (Contributed by BJ, 23-Dec-2023.) |
Ref | Expression |
---|---|
idfn | ⊢ I Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funi 6462 | . 2 ⊢ Fun I | |
2 | dmi 5827 | . 2 ⊢ dom I = V | |
3 | df-fn 6433 | . 2 ⊢ ( I Fn V ↔ (Fun I ∧ dom I = V)) | |
4 | 1, 2, 3 | mpbir2an 707 | 1 ⊢ I Fn V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 Vcvv 3430 I cid 5487 dom cdm 5588 Fun wfun 6424 Fn wfn 6425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-fun 6432 df-fn 6433 |
This theorem is referenced by: fnresi 6557 |
Copyright terms: Public domain | W3C validator |