![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idfn | Structured version Visualization version GIF version |
Description: The identity relation is a function on the universal class. See also funi 6586. (Contributed by BJ, 23-Dec-2023.) |
Ref | Expression |
---|---|
idfn | ⊢ I Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funi 6586 | . 2 ⊢ Fun I | |
2 | dmi 5924 | . 2 ⊢ dom I = V | |
3 | df-fn 6552 | . 2 ⊢ ( I Fn V ↔ (Fun I ∧ dom I = V)) | |
4 | 1, 2, 3 | mpbir2an 709 | 1 ⊢ I Fn V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 Vcvv 3461 I cid 5575 dom cdm 5678 Fun wfun 6543 Fn wfn 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-fun 6551 df-fn 6552 |
This theorem is referenced by: fnresi 6685 |
Copyright terms: Public domain | W3C validator |