| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idfn | Structured version Visualization version GIF version | ||
| Description: The identity relation is a function on the universal class. See also funi 6513. (Contributed by BJ, 23-Dec-2023.) |
| Ref | Expression |
|---|---|
| idfn | ⊢ I Fn V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funi 6513 | . 2 ⊢ Fun I | |
| 2 | dmi 5860 | . 2 ⊢ dom I = V | |
| 3 | df-fn 6484 | . 2 ⊢ ( I Fn V ↔ (Fun I ∧ dom I = V)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ I Fn V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3436 I cid 5508 dom cdm 5614 Fun wfun 6475 Fn wfn 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-fun 6483 df-fn 6484 |
| This theorem is referenced by: fnresi 6610 |
| Copyright terms: Public domain | W3C validator |