| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idfn | Structured version Visualization version GIF version | ||
| Description: The identity relation is a function on the universal class. See also funi 6550. (Contributed by BJ, 23-Dec-2023.) |
| Ref | Expression |
|---|---|
| idfn | ⊢ I Fn V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funi 6550 | . 2 ⊢ Fun I | |
| 2 | dmi 5887 | . 2 ⊢ dom I = V | |
| 3 | df-fn 6516 | . 2 ⊢ ( I Fn V ↔ (Fun I ∧ dom I = V)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ I Fn V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3450 I cid 5534 dom cdm 5640 Fun wfun 6507 Fn wfn 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-fun 6515 df-fn 6516 |
| This theorem is referenced by: fnresi 6649 |
| Copyright terms: Public domain | W3C validator |