![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idfn | Structured version Visualization version GIF version |
Description: The identity relation is a function on the universal class. See also funi 6606. (Contributed by BJ, 23-Dec-2023.) |
Ref | Expression |
---|---|
idfn | ⊢ I Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funi 6606 | . 2 ⊢ Fun I | |
2 | dmi 5939 | . 2 ⊢ dom I = V | |
3 | df-fn 6572 | . 2 ⊢ ( I Fn V ↔ (Fun I ∧ dom I = V)) | |
4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ I Fn V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3481 I cid 5586 dom cdm 5693 Fun wfun 6563 Fn wfn 6564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-fun 6571 df-fn 6572 |
This theorem is referenced by: fnresi 6705 |
Copyright terms: Public domain | W3C validator |