Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > idfn | Structured version Visualization version GIF version |
Description: The identity relation is a function on the universal class. See also funi 6495. (Contributed by BJ, 23-Dec-2023.) |
Ref | Expression |
---|---|
idfn | ⊢ I Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funi 6495 | . 2 ⊢ Fun I | |
2 | dmi 5843 | . 2 ⊢ dom I = V | |
3 | df-fn 6461 | . 2 ⊢ ( I Fn V ↔ (Fun I ∧ dom I = V)) | |
4 | 1, 2, 3 | mpbir2an 709 | 1 ⊢ I Fn V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3437 I cid 5499 dom cdm 5600 Fun wfun 6452 Fn wfn 6453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-fun 6460 df-fn 6461 |
This theorem is referenced by: fnresi 6592 |
Copyright terms: Public domain | W3C validator |