MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idfn Structured version   Visualization version   GIF version

Theorem idfn 6676
Description: The identity relation is a function on the universal class. See also funi 6578. (Contributed by BJ, 23-Dec-2023.)
Assertion
Ref Expression
idfn I Fn V

Proof of Theorem idfn
StepHypRef Expression
1 funi 6578 . 2 Fun I
2 dmi 5912 . 2 dom I = V
3 df-fn 6544 . 2 ( I Fn V ↔ (Fun I ∧ dom I = V))
41, 2, 3mpbir2an 711 1 I Fn V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3463   I cid 5557  dom cdm 5665  Fun wfun 6535   Fn wfn 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-fun 6543  df-fn 6544
This theorem is referenced by:  fnresi  6677
  Copyright terms: Public domain W3C validator