MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnres Structured version   Visualization version   GIF version

Theorem fnres 6678
Description: An equivalence for functionality of a restriction. Compare dffun8 6577. (Contributed by Mario Carneiro, 20-May-2015.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
fnres ((𝐹𝐴) Fn 𝐴 ↔ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦

Proof of Theorem fnres
StepHypRef Expression
1 ancom 462 . . 3 ((∀𝑥𝐴 ∃*𝑦 𝑥𝐹𝑦 ∧ ∀𝑥𝐴𝑦 𝑥𝐹𝑦) ↔ (∀𝑥𝐴𝑦 𝑥𝐹𝑦 ∧ ∀𝑥𝐴 ∃*𝑦 𝑥𝐹𝑦))
2 vex 3479 . . . . . . . . 9 𝑦 ∈ V
32brresi 5991 . . . . . . . 8 (𝑥(𝐹𝐴)𝑦 ↔ (𝑥𝐴𝑥𝐹𝑦))
43mobii 2543 . . . . . . 7 (∃*𝑦 𝑥(𝐹𝐴)𝑦 ↔ ∃*𝑦(𝑥𝐴𝑥𝐹𝑦))
5 moanimv 2616 . . . . . . 7 (∃*𝑦(𝑥𝐴𝑥𝐹𝑦) ↔ (𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
64, 5bitri 275 . . . . . 6 (∃*𝑦 𝑥(𝐹𝐴)𝑦 ↔ (𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
76albii 1822 . . . . 5 (∀𝑥∃*𝑦 𝑥(𝐹𝐴)𝑦 ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
8 relres 6011 . . . . . 6 Rel (𝐹𝐴)
9 dffun6 6557 . . . . . 6 (Fun (𝐹𝐴) ↔ (Rel (𝐹𝐴) ∧ ∀𝑥∃*𝑦 𝑥(𝐹𝐴)𝑦))
108, 9mpbiran 708 . . . . 5 (Fun (𝐹𝐴) ↔ ∀𝑥∃*𝑦 𝑥(𝐹𝐴)𝑦)
11 df-ral 3063 . . . . 5 (∀𝑥𝐴 ∃*𝑦 𝑥𝐹𝑦 ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
127, 10, 113bitr4i 303 . . . 4 (Fun (𝐹𝐴) ↔ ∀𝑥𝐴 ∃*𝑦 𝑥𝐹𝑦)
13 dmres 6004 . . . . . . 7 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
14 inss1 4229 . . . . . . 7 (𝐴 ∩ dom 𝐹) ⊆ 𝐴
1513, 14eqsstri 4017 . . . . . 6 dom (𝐹𝐴) ⊆ 𝐴
16 eqss 3998 . . . . . 6 (dom (𝐹𝐴) = 𝐴 ↔ (dom (𝐹𝐴) ⊆ 𝐴𝐴 ⊆ dom (𝐹𝐴)))
1715, 16mpbiran 708 . . . . 5 (dom (𝐹𝐴) = 𝐴𝐴 ⊆ dom (𝐹𝐴))
18 dfss3 3971 . . . . . 6 (𝐴 ⊆ dom (𝐹𝐴) ↔ ∀𝑥𝐴 𝑥 ∈ dom (𝐹𝐴))
1913elin2 4198 . . . . . . . . 9 (𝑥 ∈ dom (𝐹𝐴) ↔ (𝑥𝐴𝑥 ∈ dom 𝐹))
2019baib 537 . . . . . . . 8 (𝑥𝐴 → (𝑥 ∈ dom (𝐹𝐴) ↔ 𝑥 ∈ dom 𝐹))
21 vex 3479 . . . . . . . . 9 𝑥 ∈ V
2221eldm 5901 . . . . . . . 8 (𝑥 ∈ dom 𝐹 ↔ ∃𝑦 𝑥𝐹𝑦)
2320, 22bitrdi 287 . . . . . . 7 (𝑥𝐴 → (𝑥 ∈ dom (𝐹𝐴) ↔ ∃𝑦 𝑥𝐹𝑦))
2423ralbiia 3092 . . . . . 6 (∀𝑥𝐴 𝑥 ∈ dom (𝐹𝐴) ↔ ∀𝑥𝐴𝑦 𝑥𝐹𝑦)
2518, 24bitri 275 . . . . 5 (𝐴 ⊆ dom (𝐹𝐴) ↔ ∀𝑥𝐴𝑦 𝑥𝐹𝑦)
2617, 25bitri 275 . . . 4 (dom (𝐹𝐴) = 𝐴 ↔ ∀𝑥𝐴𝑦 𝑥𝐹𝑦)
2712, 26anbi12i 628 . . 3 ((Fun (𝐹𝐴) ∧ dom (𝐹𝐴) = 𝐴) ↔ (∀𝑥𝐴 ∃*𝑦 𝑥𝐹𝑦 ∧ ∀𝑥𝐴𝑦 𝑥𝐹𝑦))
28 r19.26 3112 . . 3 (∀𝑥𝐴 (∃𝑦 𝑥𝐹𝑦 ∧ ∃*𝑦 𝑥𝐹𝑦) ↔ (∀𝑥𝐴𝑦 𝑥𝐹𝑦 ∧ ∀𝑥𝐴 ∃*𝑦 𝑥𝐹𝑦))
291, 27, 283bitr4i 303 . 2 ((Fun (𝐹𝐴) ∧ dom (𝐹𝐴) = 𝐴) ↔ ∀𝑥𝐴 (∃𝑦 𝑥𝐹𝑦 ∧ ∃*𝑦 𝑥𝐹𝑦))
30 df-fn 6547 . 2 ((𝐹𝐴) Fn 𝐴 ↔ (Fun (𝐹𝐴) ∧ dom (𝐹𝐴) = 𝐴))
31 df-eu 2564 . . 3 (∃!𝑦 𝑥𝐹𝑦 ↔ (∃𝑦 𝑥𝐹𝑦 ∧ ∃*𝑦 𝑥𝐹𝑦))
3231ralbii 3094 . 2 (∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦 ↔ ∀𝑥𝐴 (∃𝑦 𝑥𝐹𝑦 ∧ ∃*𝑦 𝑥𝐹𝑦))
3329, 30, 323bitr4i 303 1 ((𝐹𝐴) Fn 𝐴 ↔ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wal 1540   = wceq 1542  wex 1782  wcel 2107  ∃*wmo 2533  ∃!weu 2563  wral 3062  cin 3948  wss 3949   class class class wbr 5149  dom cdm 5677  cres 5679  Rel wrel 5682  Fun wfun 6538   Fn wfn 6539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-res 5689  df-fun 6546  df-fn 6547
This theorem is referenced by:  f1ompt  7111  omxpenlem  9073  tz6.12-afv  45881  tz6.12-afv2  45948
  Copyright terms: Public domain W3C validator