MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnres Structured version   Visualization version   GIF version

Theorem fnres 6696
Description: An equivalence for functionality of a restriction. Compare dffun8 6596. (Contributed by Mario Carneiro, 20-May-2015.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
fnres ((𝐹𝐴) Fn 𝐴 ↔ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦

Proof of Theorem fnres
StepHypRef Expression
1 ancom 460 . . 3 ((∀𝑥𝐴 ∃*𝑦 𝑥𝐹𝑦 ∧ ∀𝑥𝐴𝑦 𝑥𝐹𝑦) ↔ (∀𝑥𝐴𝑦 𝑥𝐹𝑦 ∧ ∀𝑥𝐴 ∃*𝑦 𝑥𝐹𝑦))
2 vex 3482 . . . . . . . . 9 𝑦 ∈ V
32brresi 6009 . . . . . . . 8 (𝑥(𝐹𝐴)𝑦 ↔ (𝑥𝐴𝑥𝐹𝑦))
43mobii 2546 . . . . . . 7 (∃*𝑦 𝑥(𝐹𝐴)𝑦 ↔ ∃*𝑦(𝑥𝐴𝑥𝐹𝑦))
5 moanimv 2617 . . . . . . 7 (∃*𝑦(𝑥𝐴𝑥𝐹𝑦) ↔ (𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
64, 5bitri 275 . . . . . 6 (∃*𝑦 𝑥(𝐹𝐴)𝑦 ↔ (𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
76albii 1816 . . . . 5 (∀𝑥∃*𝑦 𝑥(𝐹𝐴)𝑦 ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
8 relres 6026 . . . . . 6 Rel (𝐹𝐴)
9 dffun6 6576 . . . . . 6 (Fun (𝐹𝐴) ↔ (Rel (𝐹𝐴) ∧ ∀𝑥∃*𝑦 𝑥(𝐹𝐴)𝑦))
108, 9mpbiran 709 . . . . 5 (Fun (𝐹𝐴) ↔ ∀𝑥∃*𝑦 𝑥(𝐹𝐴)𝑦)
11 df-ral 3060 . . . . 5 (∀𝑥𝐴 ∃*𝑦 𝑥𝐹𝑦 ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
127, 10, 113bitr4i 303 . . . 4 (Fun (𝐹𝐴) ↔ ∀𝑥𝐴 ∃*𝑦 𝑥𝐹𝑦)
13 dmres 6032 . . . . . . 7 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
14 inss1 4245 . . . . . . 7 (𝐴 ∩ dom 𝐹) ⊆ 𝐴
1513, 14eqsstri 4030 . . . . . 6 dom (𝐹𝐴) ⊆ 𝐴
16 eqss 4011 . . . . . 6 (dom (𝐹𝐴) = 𝐴 ↔ (dom (𝐹𝐴) ⊆ 𝐴𝐴 ⊆ dom (𝐹𝐴)))
1715, 16mpbiran 709 . . . . 5 (dom (𝐹𝐴) = 𝐴𝐴 ⊆ dom (𝐹𝐴))
18 dfss3 3984 . . . . . 6 (𝐴 ⊆ dom (𝐹𝐴) ↔ ∀𝑥𝐴 𝑥 ∈ dom (𝐹𝐴))
1913elin2 4213 . . . . . . . . 9 (𝑥 ∈ dom (𝐹𝐴) ↔ (𝑥𝐴𝑥 ∈ dom 𝐹))
2019baib 535 . . . . . . . 8 (𝑥𝐴 → (𝑥 ∈ dom (𝐹𝐴) ↔ 𝑥 ∈ dom 𝐹))
21 vex 3482 . . . . . . . . 9 𝑥 ∈ V
2221eldm 5914 . . . . . . . 8 (𝑥 ∈ dom 𝐹 ↔ ∃𝑦 𝑥𝐹𝑦)
2320, 22bitrdi 287 . . . . . . 7 (𝑥𝐴 → (𝑥 ∈ dom (𝐹𝐴) ↔ ∃𝑦 𝑥𝐹𝑦))
2423ralbiia 3089 . . . . . 6 (∀𝑥𝐴 𝑥 ∈ dom (𝐹𝐴) ↔ ∀𝑥𝐴𝑦 𝑥𝐹𝑦)
2518, 24bitri 275 . . . . 5 (𝐴 ⊆ dom (𝐹𝐴) ↔ ∀𝑥𝐴𝑦 𝑥𝐹𝑦)
2617, 25bitri 275 . . . 4 (dom (𝐹𝐴) = 𝐴 ↔ ∀𝑥𝐴𝑦 𝑥𝐹𝑦)
2712, 26anbi12i 628 . . 3 ((Fun (𝐹𝐴) ∧ dom (𝐹𝐴) = 𝐴) ↔ (∀𝑥𝐴 ∃*𝑦 𝑥𝐹𝑦 ∧ ∀𝑥𝐴𝑦 𝑥𝐹𝑦))
28 r19.26 3109 . . 3 (∀𝑥𝐴 (∃𝑦 𝑥𝐹𝑦 ∧ ∃*𝑦 𝑥𝐹𝑦) ↔ (∀𝑥𝐴𝑦 𝑥𝐹𝑦 ∧ ∀𝑥𝐴 ∃*𝑦 𝑥𝐹𝑦))
291, 27, 283bitr4i 303 . 2 ((Fun (𝐹𝐴) ∧ dom (𝐹𝐴) = 𝐴) ↔ ∀𝑥𝐴 (∃𝑦 𝑥𝐹𝑦 ∧ ∃*𝑦 𝑥𝐹𝑦))
30 df-fn 6566 . 2 ((𝐹𝐴) Fn 𝐴 ↔ (Fun (𝐹𝐴) ∧ dom (𝐹𝐴) = 𝐴))
31 df-eu 2567 . . 3 (∃!𝑦 𝑥𝐹𝑦 ↔ (∃𝑦 𝑥𝐹𝑦 ∧ ∃*𝑦 𝑥𝐹𝑦))
3231ralbii 3091 . 2 (∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦 ↔ ∀𝑥𝐴 (∃𝑦 𝑥𝐹𝑦 ∧ ∃*𝑦 𝑥𝐹𝑦))
3329, 30, 323bitr4i 303 1 ((𝐹𝐴) Fn 𝐴 ↔ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wex 1776  wcel 2106  ∃*wmo 2536  ∃!weu 2566  wral 3059  cin 3962  wss 3963   class class class wbr 5148  dom cdm 5689  cres 5691  Rel wrel 5694  Fun wfun 6557   Fn wfn 6558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-res 5701  df-fun 6565  df-fn 6566
This theorem is referenced by:  f1ompt  7131  omxpenlem  9112  tz6.12-afv  47123  tz6.12-afv2  47190
  Copyright terms: Public domain W3C validator