MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnres Structured version   Visualization version   GIF version

Theorem fnres 6613
Description: An equivalence for functionality of a restriction. Compare dffun8 6514. (Contributed by Mario Carneiro, 20-May-2015.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
fnres ((𝐹𝐴) Fn 𝐴 ↔ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦

Proof of Theorem fnres
StepHypRef Expression
1 ancom 460 . . 3 ((∀𝑥𝐴 ∃*𝑦 𝑥𝐹𝑦 ∧ ∀𝑥𝐴𝑦 𝑥𝐹𝑦) ↔ (∀𝑥𝐴𝑦 𝑥𝐹𝑦 ∧ ∀𝑥𝐴 ∃*𝑦 𝑥𝐹𝑦))
2 vex 3441 . . . . . . . . 9 𝑦 ∈ V
32brresi 5941 . . . . . . . 8 (𝑥(𝐹𝐴)𝑦 ↔ (𝑥𝐴𝑥𝐹𝑦))
43mobii 2545 . . . . . . 7 (∃*𝑦 𝑥(𝐹𝐴)𝑦 ↔ ∃*𝑦(𝑥𝐴𝑥𝐹𝑦))
5 moanimv 2616 . . . . . . 7 (∃*𝑦(𝑥𝐴𝑥𝐹𝑦) ↔ (𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
64, 5bitri 275 . . . . . 6 (∃*𝑦 𝑥(𝐹𝐴)𝑦 ↔ (𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
76albii 1820 . . . . 5 (∀𝑥∃*𝑦 𝑥(𝐹𝐴)𝑦 ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
8 relres 5958 . . . . . 6 Rel (𝐹𝐴)
9 dffun6 6497 . . . . . 6 (Fun (𝐹𝐴) ↔ (Rel (𝐹𝐴) ∧ ∀𝑥∃*𝑦 𝑥(𝐹𝐴)𝑦))
108, 9mpbiran 709 . . . . 5 (Fun (𝐹𝐴) ↔ ∀𝑥∃*𝑦 𝑥(𝐹𝐴)𝑦)
11 df-ral 3049 . . . . 5 (∀𝑥𝐴 ∃*𝑦 𝑥𝐹𝑦 ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
127, 10, 113bitr4i 303 . . . 4 (Fun (𝐹𝐴) ↔ ∀𝑥𝐴 ∃*𝑦 𝑥𝐹𝑦)
13 dmres 5965 . . . . . . 7 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
14 inss1 4186 . . . . . . 7 (𝐴 ∩ dom 𝐹) ⊆ 𝐴
1513, 14eqsstri 3977 . . . . . 6 dom (𝐹𝐴) ⊆ 𝐴
16 eqss 3946 . . . . . 6 (dom (𝐹𝐴) = 𝐴 ↔ (dom (𝐹𝐴) ⊆ 𝐴𝐴 ⊆ dom (𝐹𝐴)))
1715, 16mpbiran 709 . . . . 5 (dom (𝐹𝐴) = 𝐴𝐴 ⊆ dom (𝐹𝐴))
18 dfss3 3919 . . . . . 6 (𝐴 ⊆ dom (𝐹𝐴) ↔ ∀𝑥𝐴 𝑥 ∈ dom (𝐹𝐴))
1913elin2 4152 . . . . . . . . 9 (𝑥 ∈ dom (𝐹𝐴) ↔ (𝑥𝐴𝑥 ∈ dom 𝐹))
2019baib 535 . . . . . . . 8 (𝑥𝐴 → (𝑥 ∈ dom (𝐹𝐴) ↔ 𝑥 ∈ dom 𝐹))
21 vex 3441 . . . . . . . . 9 𝑥 ∈ V
2221eldm 5844 . . . . . . . 8 (𝑥 ∈ dom 𝐹 ↔ ∃𝑦 𝑥𝐹𝑦)
2320, 22bitrdi 287 . . . . . . 7 (𝑥𝐴 → (𝑥 ∈ dom (𝐹𝐴) ↔ ∃𝑦 𝑥𝐹𝑦))
2423ralbiia 3077 . . . . . 6 (∀𝑥𝐴 𝑥 ∈ dom (𝐹𝐴) ↔ ∀𝑥𝐴𝑦 𝑥𝐹𝑦)
2518, 24bitri 275 . . . . 5 (𝐴 ⊆ dom (𝐹𝐴) ↔ ∀𝑥𝐴𝑦 𝑥𝐹𝑦)
2617, 25bitri 275 . . . 4 (dom (𝐹𝐴) = 𝐴 ↔ ∀𝑥𝐴𝑦 𝑥𝐹𝑦)
2712, 26anbi12i 628 . . 3 ((Fun (𝐹𝐴) ∧ dom (𝐹𝐴) = 𝐴) ↔ (∀𝑥𝐴 ∃*𝑦 𝑥𝐹𝑦 ∧ ∀𝑥𝐴𝑦 𝑥𝐹𝑦))
28 r19.26 3093 . . 3 (∀𝑥𝐴 (∃𝑦 𝑥𝐹𝑦 ∧ ∃*𝑦 𝑥𝐹𝑦) ↔ (∀𝑥𝐴𝑦 𝑥𝐹𝑦 ∧ ∀𝑥𝐴 ∃*𝑦 𝑥𝐹𝑦))
291, 27, 283bitr4i 303 . 2 ((Fun (𝐹𝐴) ∧ dom (𝐹𝐴) = 𝐴) ↔ ∀𝑥𝐴 (∃𝑦 𝑥𝐹𝑦 ∧ ∃*𝑦 𝑥𝐹𝑦))
30 df-fn 6489 . 2 ((𝐹𝐴) Fn 𝐴 ↔ (Fun (𝐹𝐴) ∧ dom (𝐹𝐴) = 𝐴))
31 df-eu 2566 . . 3 (∃!𝑦 𝑥𝐹𝑦 ↔ (∃𝑦 𝑥𝐹𝑦 ∧ ∃*𝑦 𝑥𝐹𝑦))
3231ralbii 3079 . 2 (∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦 ↔ ∀𝑥𝐴 (∃𝑦 𝑥𝐹𝑦 ∧ ∃*𝑦 𝑥𝐹𝑦))
3329, 30, 323bitr4i 303 1 ((𝐹𝐴) Fn 𝐴 ↔ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2113  ∃*wmo 2535  ∃!weu 2565  wral 3048  cin 3897  wss 3898   class class class wbr 5093  dom cdm 5619  cres 5621  Rel wrel 5624  Fun wfun 6480   Fn wfn 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-res 5631  df-fun 6488  df-fn 6489
This theorem is referenced by:  f1ompt  7050  omxpenlem  8998  tz6.12-afv  47298  tz6.12-afv2  47365
  Copyright terms: Public domain W3C validator