| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnresi | Structured version Visualization version GIF version | ||
| Description: The restricted identity relation is a function on the restricting class. (Contributed by NM, 27-Aug-2004.) (Proof shortened by BJ, 27-Dec-2023.) |
| Ref | Expression |
|---|---|
| fnresi | ⊢ ( I ↾ 𝐴) Fn 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfn 6628 | . 2 ⊢ I Fn V | |
| 2 | ssv 3968 | . 2 ⊢ 𝐴 ⊆ V | |
| 3 | fnssres 6623 | . 2 ⊢ (( I Fn V ∧ 𝐴 ⊆ V) → ( I ↾ 𝐴) Fn 𝐴) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ( I ↾ 𝐴) Fn 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3444 ⊆ wss 3911 I cid 5525 ↾ cres 5633 Fn wfn 6494 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-res 5643 df-fun 6501 df-fn 6502 |
| This theorem is referenced by: f1oi 6820 fninfp 7130 fndifnfp 7132 fnnfpeq0 7134 fveqf1o 7259 weniso 7311 iordsmo 8303 fipreima 9285 dfac9 10066 smndex1n0mnd 18821 pmtrfinv 19375 psdmplcl 22082 ustuqtop3 24164 fta1blem 26109 qaa 26264 dfiop2 31732 symgcom2 33056 tocycfvres1 33082 tocycfvres2 33083 cvmliftlem4 35268 cvmliftlem5 35269 poimirlem15 37622 poimirlem22 37629 ltrnid 40122 dvsid 44313 cjnpoly 46883 dflinc2 48392 tposideq 48869 |
| Copyright terms: Public domain | W3C validator |