![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnresi | Structured version Visualization version GIF version |
Description: The restricted identity relation is a function on the restricting class. (Contributed by NM, 27-Aug-2004.) (Proof shortened by BJ, 27-Dec-2023.) |
Ref | Expression |
---|---|
fnresi | ⊢ ( I ↾ 𝐴) Fn 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idfn 6697 | . 2 ⊢ I Fn V | |
2 | ssv 4020 | . 2 ⊢ 𝐴 ⊆ V | |
3 | fnssres 6692 | . 2 ⊢ (( I Fn V ∧ 𝐴 ⊆ V) → ( I ↾ 𝐴) Fn 𝐴) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ( I ↾ 𝐴) Fn 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3478 ⊆ wss 3963 I cid 5582 ↾ cres 5691 Fn wfn 6558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-res 5701 df-fun 6565 df-fn 6566 |
This theorem is referenced by: f1oi 6887 fninfp 7194 fndifnfp 7196 fnnfpeq0 7198 fveqf1o 7322 weniso 7374 iordsmo 8396 fipreima 9396 dfac9 10175 smndex1n0mnd 18938 pmtrfinv 19494 psdmplcl 22184 ustuqtop3 24268 fta1blem 26225 qaa 26380 dfiop2 31782 symgcom2 33087 tocycfvres1 33113 tocycfvres2 33114 cvmliftlem4 35273 cvmliftlem5 35274 poimirlem15 37622 poimirlem22 37629 ltrnid 40118 dvsid 44327 dflinc2 48256 |
Copyright terms: Public domain | W3C validator |