Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnresi | Structured version Visualization version GIF version |
Description: The restricted identity relation is a function on the restricting class. (Contributed by NM, 27-Aug-2004.) (Proof shortened by BJ, 27-Dec-2023.) |
Ref | Expression |
---|---|
fnresi | ⊢ ( I ↾ 𝐴) Fn 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idfn 6544 | . 2 ⊢ I Fn V | |
2 | ssv 3941 | . 2 ⊢ 𝐴 ⊆ V | |
3 | fnssres 6539 | . 2 ⊢ (( I Fn V ∧ 𝐴 ⊆ V) → ( I ↾ 𝐴) Fn 𝐴) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ ( I ↾ 𝐴) Fn 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3422 ⊆ wss 3883 I cid 5479 ↾ cres 5582 Fn wfn 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-fun 6420 df-fn 6421 |
This theorem is referenced by: f1oi 6737 fninfp 7028 fndifnfp 7030 fnnfpeq0 7032 fveqf1o 7155 weniso 7205 iordsmo 8159 fipreima 9055 dfac9 9823 smndex1n0mnd 18466 pmtrfinv 18984 ustuqtop3 23303 fta1blem 25238 qaa 25388 dfiop2 30016 symgcom2 31255 tocycfvres1 31279 tocycfvres2 31280 cvmliftlem4 33150 cvmliftlem5 33151 poimirlem15 35719 poimirlem22 35726 ltrnid 38076 dvsid 41838 dflinc2 45639 |
Copyright terms: Public domain | W3C validator |