| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnresi | Structured version Visualization version GIF version | ||
| Description: The restricted identity relation is a function on the restricting class. (Contributed by NM, 27-Aug-2004.) (Proof shortened by BJ, 27-Dec-2023.) |
| Ref | Expression |
|---|---|
| fnresi | ⊢ ( I ↾ 𝐴) Fn 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfn 6609 | . 2 ⊢ I Fn V | |
| 2 | ssv 3954 | . 2 ⊢ 𝐴 ⊆ V | |
| 3 | fnssres 6604 | . 2 ⊢ (( I Fn V ∧ 𝐴 ⊆ V) → ( I ↾ 𝐴) Fn 𝐴) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ( I ↾ 𝐴) Fn 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3436 ⊆ wss 3897 I cid 5508 ↾ cres 5616 Fn wfn 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-res 5626 df-fun 6483 df-fn 6484 |
| This theorem is referenced by: f1oi 6801 fninfp 7108 fndifnfp 7110 fnnfpeq0 7112 fveqf1o 7236 weniso 7288 iordsmo 8277 fipreima 9242 dfac9 10028 smndex1n0mnd 18820 pmtrfinv 19373 psdmplcl 22077 ustuqtop3 24158 fta1blem 26103 qaa 26258 dfiop2 31733 symgcom2 33053 tocycfvres1 33079 tocycfvres2 33080 cvmliftlem4 35332 cvmliftlem5 35333 poimirlem15 37683 poimirlem22 37690 ltrnid 40182 dvsid 44372 cjnpoly 46928 dflinc2 48450 tposideq 48927 |
| Copyright terms: Public domain | W3C validator |