| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnresi | Structured version Visualization version GIF version | ||
| Description: The restricted identity relation is a function on the restricting class. (Contributed by NM, 27-Aug-2004.) (Proof shortened by BJ, 27-Dec-2023.) |
| Ref | Expression |
|---|---|
| fnresi | ⊢ ( I ↾ 𝐴) Fn 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfn 6649 | . 2 ⊢ I Fn V | |
| 2 | ssv 3974 | . 2 ⊢ 𝐴 ⊆ V | |
| 3 | fnssres 6644 | . 2 ⊢ (( I Fn V ∧ 𝐴 ⊆ V) → ( I ↾ 𝐴) Fn 𝐴) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ( I ↾ 𝐴) Fn 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3450 ⊆ wss 3917 I cid 5535 ↾ cres 5643 Fn wfn 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-res 5653 df-fun 6516 df-fn 6517 |
| This theorem is referenced by: f1oi 6841 fninfp 7151 fndifnfp 7153 fnnfpeq0 7155 fveqf1o 7280 weniso 7332 iordsmo 8329 fipreima 9316 dfac9 10097 smndex1n0mnd 18846 pmtrfinv 19398 psdmplcl 22056 ustuqtop3 24138 fta1blem 26083 qaa 26238 dfiop2 31689 symgcom2 33048 tocycfvres1 33074 tocycfvres2 33075 cvmliftlem4 35282 cvmliftlem5 35283 poimirlem15 37636 poimirlem22 37643 ltrnid 40136 dvsid 44327 dflinc2 48403 tposideq 48880 |
| Copyright terms: Public domain | W3C validator |