![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnresi | Structured version Visualization version GIF version |
Description: The restricted identity relation is a function on the restricting class. (Contributed by NM, 27-Aug-2004.) (Proof shortened by BJ, 27-Dec-2023.) |
Ref | Expression |
---|---|
fnresi | ⊢ ( I ↾ 𝐴) Fn 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idfn 6708 | . 2 ⊢ I Fn V | |
2 | ssv 4033 | . 2 ⊢ 𝐴 ⊆ V | |
3 | fnssres 6703 | . 2 ⊢ (( I Fn V ∧ 𝐴 ⊆ V) → ( I ↾ 𝐴) Fn 𝐴) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ ( I ↾ 𝐴) Fn 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3488 ⊆ wss 3976 I cid 5592 ↾ cres 5702 Fn wfn 6568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-fun 6575 df-fn 6576 |
This theorem is referenced by: f1oi 6900 fninfp 7208 fndifnfp 7210 fnnfpeq0 7212 fveqf1o 7338 weniso 7390 iordsmo 8413 fipreima 9428 dfac9 10206 smndex1n0mnd 18947 pmtrfinv 19503 psdmplcl 22189 ustuqtop3 24273 fta1blem 26230 qaa 26383 dfiop2 31785 symgcom2 33077 tocycfvres1 33103 tocycfvres2 33104 cvmliftlem4 35256 cvmliftlem5 35257 poimirlem15 37595 poimirlem22 37602 ltrnid 40092 dvsid 44300 dflinc2 48139 |
Copyright terms: Public domain | W3C validator |