![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnresi | Structured version Visualization version GIF version |
Description: The restricted identity relation is a function on the restricting class. (Contributed by NM, 27-Aug-2004.) (Proof shortened by BJ, 27-Dec-2023.) |
Ref | Expression |
---|---|
fnresi | ⊢ ( I ↾ 𝐴) Fn 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idfn 6677 | . 2 ⊢ I Fn V | |
2 | ssv 4005 | . 2 ⊢ 𝐴 ⊆ V | |
3 | fnssres 6672 | . 2 ⊢ (( I Fn V ∧ 𝐴 ⊆ V) → ( I ↾ 𝐴) Fn 𝐴) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ ( I ↾ 𝐴) Fn 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3472 ⊆ wss 3947 I cid 5572 ↾ cres 5677 Fn wfn 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-res 5687 df-fun 6544 df-fn 6545 |
This theorem is referenced by: f1oi 6870 fninfp 7173 fndifnfp 7175 fnnfpeq0 7177 fveqf1o 7303 weniso 7353 iordsmo 8359 fipreima 9360 dfac9 10133 smndex1n0mnd 18829 pmtrfinv 19370 ustuqtop3 23968 fta1blem 25921 qaa 26072 dfiop2 31273 symgcom2 32515 tocycfvres1 32539 tocycfvres2 32540 cvmliftlem4 34577 cvmliftlem5 34578 poimirlem15 36806 poimirlem22 36813 ltrnid 39309 dvsid 43392 dflinc2 47178 |
Copyright terms: Public domain | W3C validator |