| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnresi | Structured version Visualization version GIF version | ||
| Description: The restricted identity relation is a function on the restricting class. (Contributed by NM, 27-Aug-2004.) (Proof shortened by BJ, 27-Dec-2023.) |
| Ref | Expression |
|---|---|
| fnresi | ⊢ ( I ↾ 𝐴) Fn 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfn 6666 | . 2 ⊢ I Fn V | |
| 2 | ssv 3983 | . 2 ⊢ 𝐴 ⊆ V | |
| 3 | fnssres 6661 | . 2 ⊢ (( I Fn V ∧ 𝐴 ⊆ V) → ( I ↾ 𝐴) Fn 𝐴) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ( I ↾ 𝐴) Fn 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3459 ⊆ wss 3926 I cid 5547 ↾ cres 5656 Fn wfn 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-res 5666 df-fun 6533 df-fn 6534 |
| This theorem is referenced by: f1oi 6856 fninfp 7166 fndifnfp 7168 fnnfpeq0 7170 fveqf1o 7295 weniso 7347 iordsmo 8371 fipreima 9370 dfac9 10151 smndex1n0mnd 18890 pmtrfinv 19442 psdmplcl 22100 ustuqtop3 24182 fta1blem 26128 qaa 26283 dfiop2 31734 symgcom2 33095 tocycfvres1 33121 tocycfvres2 33122 cvmliftlem4 35310 cvmliftlem5 35311 poimirlem15 37659 poimirlem22 37666 ltrnid 40154 dvsid 44355 dflinc2 48386 tposideq 48863 |
| Copyright terms: Public domain | W3C validator |