| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnresi | Structured version Visualization version GIF version | ||
| Description: The restricted identity relation is a function on the restricting class. (Contributed by NM, 27-Aug-2004.) (Proof shortened by BJ, 27-Dec-2023.) |
| Ref | Expression |
|---|---|
| fnresi | ⊢ ( I ↾ 𝐴) Fn 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfn 6610 | . 2 ⊢ I Fn V | |
| 2 | ssv 3960 | . 2 ⊢ 𝐴 ⊆ V | |
| 3 | fnssres 6605 | . 2 ⊢ (( I Fn V ∧ 𝐴 ⊆ V) → ( I ↾ 𝐴) Fn 𝐴) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ( I ↾ 𝐴) Fn 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3436 ⊆ wss 3903 I cid 5513 ↾ cres 5621 Fn wfn 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-res 5631 df-fun 6484 df-fn 6485 |
| This theorem is referenced by: f1oi 6802 fninfp 7110 fndifnfp 7112 fnnfpeq0 7114 fveqf1o 7239 weniso 7291 iordsmo 8280 fipreima 9248 dfac9 10031 smndex1n0mnd 18786 pmtrfinv 19340 psdmplcl 22047 ustuqtop3 24129 fta1blem 26074 qaa 26229 dfiop2 31697 symgcom2 33026 tocycfvres1 33052 tocycfvres2 33053 cvmliftlem4 35261 cvmliftlem5 35262 poimirlem15 37615 poimirlem22 37622 ltrnid 40114 dvsid 44304 cjnpoly 46873 dflinc2 48395 tposideq 48872 |
| Copyright terms: Public domain | W3C validator |