| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnresi | Structured version Visualization version GIF version | ||
| Description: The restricted identity relation is a function on the restricting class. (Contributed by NM, 27-Aug-2004.) (Proof shortened by BJ, 27-Dec-2023.) |
| Ref | Expression |
|---|---|
| fnresi | ⊢ ( I ↾ 𝐴) Fn 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfn 6646 | . 2 ⊢ I Fn V | |
| 2 | ssv 3971 | . 2 ⊢ 𝐴 ⊆ V | |
| 3 | fnssres 6641 | . 2 ⊢ (( I Fn V ∧ 𝐴 ⊆ V) → ( I ↾ 𝐴) Fn 𝐴) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ( I ↾ 𝐴) Fn 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3447 ⊆ wss 3914 I cid 5532 ↾ cres 5640 Fn wfn 6506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-res 5650 df-fun 6513 df-fn 6514 |
| This theorem is referenced by: f1oi 6838 fninfp 7148 fndifnfp 7150 fnnfpeq0 7152 fveqf1o 7277 weniso 7329 iordsmo 8326 fipreima 9309 dfac9 10090 smndex1n0mnd 18839 pmtrfinv 19391 psdmplcl 22049 ustuqtop3 24131 fta1blem 26076 qaa 26231 dfiop2 31682 symgcom2 33041 tocycfvres1 33067 tocycfvres2 33068 cvmliftlem4 35275 cvmliftlem5 35276 poimirlem15 37629 poimirlem22 37636 ltrnid 40129 dvsid 44320 cjnpoly 46890 dflinc2 48399 tposideq 48876 |
| Copyright terms: Public domain | W3C validator |