Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idsymrel Structured version   Visualization version   GIF version

Theorem idsymrel 38517
Description: The identity relation is symmetric. (Contributed by AV, 19-Jun-2022.)
Assertion
Ref Expression
idsymrel SymRel I

Proof of Theorem idsymrel
StepHypRef Expression
1 cnvi 6173 . 2 I = I
2 reli 5850 . 2 Rel I
3 dfsymrel4 38507 . 2 ( SymRel I ↔ ( I = I ∧ Rel I ))
41, 2, 3mpbir2an 710 1 SymRel I
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537   I cid 5592  ccnv 5699  Rel wrel 5705   SymRel wsymrel 38147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-symrel 38500
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator