![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idsymrel | Structured version Visualization version GIF version |
Description: The identity relation is symmetric. (Contributed by AV, 19-Jun-2022.) |
Ref | Expression |
---|---|
idsymrel | ⊢ SymRel I |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvi 6173 | . 2 ⊢ ◡ I = I | |
2 | reli 5850 | . 2 ⊢ Rel I | |
3 | dfsymrel4 38507 | . 2 ⊢ ( SymRel I ↔ (◡ I = I ∧ Rel I )) | |
4 | 1, 2, 3 | mpbir2an 710 | 1 ⊢ SymRel I |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 I cid 5592 ◡ccnv 5699 Rel wrel 5705 SymRel wsymrel 38147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-symrel 38500 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |