Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idsymrel Structured version   Visualization version   GIF version

Theorem idsymrel 36298
Description: The identity relation is symmetric. (Contributed by AV, 19-Jun-2022.)
Assertion
Ref Expression
idsymrel SymRel I

Proof of Theorem idsymrel
StepHypRef Expression
1 cnvi 5974 . 2 I = I
2 reli 5670 . 2 Rel I
3 dfsymrel4 36288 . 2 ( SymRel I ↔ ( I = I ∧ Rel I ))
41, 2, 3mpbir2an 711 1 SymRel I
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542   I cid 5428  ccnv 5524  Rel wrel 5530   SymRel wsymrel 35968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-sn 4517  df-pr 4519  df-op 4523  df-br 5031  df-opab 5093  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-dm 5535  df-rn 5536  df-res 5537  df-symrel 36281
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator