| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > epnsymrel | Structured version Visualization version GIF version | ||
| Description: The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022.) |
| Ref | Expression |
|---|---|
| epnsymrel | ⊢ ¬ SymRel E |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epnsym 9653 | . . . 4 ⊢ ◡ E ≠ E | |
| 2 | 1 | neii 2935 | . . 3 ⊢ ¬ ◡ E = E |
| 3 | 2 | intnanr 486 | . 2 ⊢ ¬ (◡ E = E ∧ Rel E ) |
| 4 | dfsymrel4 38334 | . 2 ⊢ ( SymRel E ↔ (◡ E = E ∧ Rel E )) | |
| 5 | 3, 4 | mtbir 322 | 1 ⊢ ¬ SymRel E |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 394 = wceq 1534 E cep 5587 ◡ccnv 5683 Rel wrel 5689 SymRel wsymrel 37973 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2102 ax-9 2110 ax-10 2133 ax-11 2150 ax-12 2170 ax-ext 2700 ax-sep 5305 ax-nul 5312 ax-pr 5435 ax-reg 9636 |
| This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2062 df-clab 2707 df-cleq 2721 df-clel 2806 df-ne 2934 df-ral 3055 df-rex 3064 df-rab 3429 df-v 3474 df-dif 3961 df-un 3963 df-in 3965 df-ss 3975 df-nul 4334 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-br 5155 df-opab 5217 df-eprel 5588 df-fr 5639 df-xp 5690 df-rel 5691 df-cnv 5692 df-dm 5694 df-rn 5695 df-res 5696 df-symrel 38327 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |