Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  epnsymrel Structured version   Visualization version   GIF version

Theorem epnsymrel 37432
Description: The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022.)
Assertion
Ref Expression
epnsymrel ¬ SymRel E

Proof of Theorem epnsymrel
StepHypRef Expression
1 epnsym 9604 . . . 4 E ≠ E
21neii 2943 . . 3 ¬ E = E
32intnanr 489 . 2 ¬ ( E = E ∧ Rel E )
4 dfsymrel4 37421 . 2 ( SymRel E ↔ ( E = E ∧ Rel E ))
53, 4mtbir 323 1 ¬ SymRel E
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 397   = wceq 1542   E cep 5580  ccnv 5676  Rel wrel 5682   SymRel wsymrel 37055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-reg 9587
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-eprel 5581  df-fr 5632  df-xp 5683  df-rel 5684  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689  df-symrel 37414
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator