Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > epnsymrel | Structured version Visualization version GIF version |
Description: The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022.) |
Ref | Expression |
---|---|
epnsymrel | ⊢ ¬ SymRel E |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epnsym 9435 | . . . 4 ⊢ ◡ E ≠ E | |
2 | 1 | neii 2943 | . . 3 ⊢ ¬ ◡ E = E |
3 | 2 | intnanr 488 | . 2 ⊢ ¬ (◡ E = E ∧ Rel E ) |
4 | dfsymrel4 36777 | . 2 ⊢ ( SymRel E ↔ (◡ E = E ∧ Rel E )) | |
5 | 3, 4 | mtbir 322 | 1 ⊢ ¬ SymRel E |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1540 E cep 5510 ◡ccnv 5604 Rel wrel 5610 SymRel wsymrel 36405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pr 5365 ax-reg 9419 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-br 5086 df-opab 5148 df-eprel 5511 df-fr 5560 df-xp 5611 df-rel 5612 df-cnv 5613 df-dm 5615 df-rn 5616 df-res 5617 df-symrel 36770 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |