Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  epnsymrel Structured version   Visualization version   GIF version

Theorem epnsymrel 38678
Description: The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022.)
Assertion
Ref Expression
epnsymrel ¬ SymRel E

Proof of Theorem epnsymrel
StepHypRef Expression
1 epnsym 9506 . . . 4 E ≠ E
21neii 2931 . . 3 ¬ E = E
32intnanr 487 . 2 ¬ ( E = E ∧ Rel E )
4 dfsymrel4 38667 . 2 ( SymRel E ↔ ( E = E ∧ Rel E ))
53, 4mtbir 323 1 ¬ SymRel E
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541   E cep 5518  ccnv 5618  Rel wrel 5624   SymRel wsymrel 38254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-reg 9485
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-eprel 5519  df-fr 5572  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-symrel 38656
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator