| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > epnsymrel | Structured version Visualization version GIF version | ||
| Description: The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022.) |
| Ref | Expression |
|---|---|
| epnsymrel | ⊢ ¬ SymRel E |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epnsym 9506 | . . . 4 ⊢ ◡ E ≠ E | |
| 2 | 1 | neii 2931 | . . 3 ⊢ ¬ ◡ E = E |
| 3 | 2 | intnanr 487 | . 2 ⊢ ¬ (◡ E = E ∧ Rel E ) |
| 4 | dfsymrel4 38667 | . 2 ⊢ ( SymRel E ↔ (◡ E = E ∧ Rel E )) | |
| 5 | 3, 4 | mtbir 323 | 1 ⊢ ¬ SymRel E |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 E cep 5518 ◡ccnv 5618 Rel wrel 5624 SymRel wsymrel 38254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-reg 9485 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-eprel 5519 df-fr 5572 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-symrel 38656 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |