Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  epnsymrel Structured version   Visualization version   GIF version

Theorem epnsymrel 38518
Description: The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022.)
Assertion
Ref Expression
epnsymrel ¬ SymRel E

Proof of Theorem epnsymrel
StepHypRef Expression
1 epnsym 9678 . . . 4 E ≠ E
21neii 2948 . . 3 ¬ E = E
32intnanr 487 . 2 ¬ ( E = E ∧ Rel E )
4 dfsymrel4 38507 . 2 ( SymRel E ↔ ( E = E ∧ Rel E ))
53, 4mtbir 323 1 ¬ SymRel E
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1537   E cep 5598  ccnv 5699  Rel wrel 5705   SymRel wsymrel 38147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-reg 9661
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-eprel 5599  df-fr 5652  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-symrel 38500
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator