Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > epnsymrel | Structured version Visualization version GIF version |
Description: The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022.) |
Ref | Expression |
---|---|
epnsymrel | ⊢ ¬ SymRel E |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epnsym 9367 | . . . 4 ⊢ ◡ E ≠ E | |
2 | 1 | neii 2945 | . . 3 ⊢ ¬ ◡ E = E |
3 | 2 | intnanr 488 | . 2 ⊢ ¬ (◡ E = E ∧ Rel E ) |
4 | dfsymrel4 36665 | . 2 ⊢ ( SymRel E ↔ (◡ E = E ∧ Rel E )) | |
5 | 3, 4 | mtbir 323 | 1 ⊢ ¬ SymRel E |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1539 E cep 5494 ◡ccnv 5588 Rel wrel 5594 SymRel wsymrel 36345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-reg 9351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-eprel 5495 df-fr 5544 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-symrel 36658 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |