![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > epnsymrel | Structured version Visualization version GIF version |
Description: The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022.) |
Ref | Expression |
---|---|
epnsymrel | ⊢ ¬ SymRel E |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epnsym 9678 | . . . 4 ⊢ ◡ E ≠ E | |
2 | 1 | neii 2948 | . . 3 ⊢ ¬ ◡ E = E |
3 | 2 | intnanr 487 | . 2 ⊢ ¬ (◡ E = E ∧ Rel E ) |
4 | dfsymrel4 38507 | . 2 ⊢ ( SymRel E ↔ (◡ E = E ∧ Rel E )) | |
5 | 3, 4 | mtbir 323 | 1 ⊢ ¬ SymRel E |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1537 E cep 5598 ◡ccnv 5699 Rel wrel 5705 SymRel wsymrel 38147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-reg 9661 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-eprel 5599 df-fr 5652 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-symrel 38500 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |