| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > epnsymrel | Structured version Visualization version GIF version | ||
| Description: The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022.) |
| Ref | Expression |
|---|---|
| epnsymrel | ⊢ ¬ SymRel E |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epnsym 9569 | . . . 4 ⊢ ◡ E ≠ E | |
| 2 | 1 | neii 2928 | . . 3 ⊢ ¬ ◡ E = E |
| 3 | 2 | intnanr 487 | . 2 ⊢ ¬ (◡ E = E ∧ Rel E ) |
| 4 | dfsymrel4 38549 | . 2 ⊢ ( SymRel E ↔ (◡ E = E ∧ Rel E )) | |
| 5 | 3, 4 | mtbir 323 | 1 ⊢ ¬ SymRel E |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 E cep 5540 ◡ccnv 5640 Rel wrel 5646 SymRel wsymrel 38188 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-reg 9552 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-eprel 5541 df-fr 5594 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-symrel 38542 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |