Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  epnsymrel Structured version   Visualization version   GIF version

Theorem epnsymrel 36788
Description: The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022.)
Assertion
Ref Expression
epnsymrel ¬ SymRel E

Proof of Theorem epnsymrel
StepHypRef Expression
1 epnsym 9435 . . . 4 E ≠ E
21neii 2943 . . 3 ¬ E = E
32intnanr 488 . 2 ¬ ( E = E ∧ Rel E )
4 dfsymrel4 36777 . 2 ( SymRel E ↔ ( E = E ∧ Rel E ))
53, 4mtbir 322 1 ¬ SymRel E
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1540   E cep 5510  ccnv 5604  Rel wrel 5610   SymRel wsymrel 36405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pr 5365  ax-reg 9419
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-br 5086  df-opab 5148  df-eprel 5511  df-fr 5560  df-xp 5611  df-rel 5612  df-cnv 5613  df-dm 5615  df-rn 5616  df-res 5617  df-symrel 36770
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator