Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinfprg Structured version   Visualization version   GIF version

Theorem iinfprg 48904
Description: Indexed intersection of functions with an unordered pair index. (Contributed by Zhi Wang, 31-Oct-2025.)
Assertion
Ref Expression
iinfprg ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑥) ∩ (𝐵𝑥))) = (𝑥 𝑦 ∈ {𝐴, 𝐵}dom 𝑦 𝑦 ∈ {𝐴, 𝐵} (𝑦𝑥)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑉   𝑥,𝑊
Allowed substitution hints:   𝑉(𝑦)   𝑊(𝑦)

Proof of Theorem iinfprg
StepHypRef Expression
1 dmeq 5880 . . . 4 (𝑦 = 𝐴 → dom 𝑦 = dom 𝐴)
2 dmeq 5880 . . . 4 (𝑦 = 𝐵 → dom 𝑦 = dom 𝐵)
31, 2iinxprg 5062 . . 3 ((𝐴𝑉𝐵𝑊) → 𝑦 ∈ {𝐴, 𝐵}dom 𝑦 = (dom 𝐴 ∩ dom 𝐵))
4 fveq1 6871 . . . 4 (𝑦 = 𝐴 → (𝑦𝑥) = (𝐴𝑥))
5 fveq1 6871 . . . 4 (𝑦 = 𝐵 → (𝑦𝑥) = (𝐵𝑥))
64, 5iinxprg 5062 . . 3 ((𝐴𝑉𝐵𝑊) → 𝑦 ∈ {𝐴, 𝐵} (𝑦𝑥) = ((𝐴𝑥) ∩ (𝐵𝑥)))
73, 6mpteq12dv 5204 . 2 ((𝐴𝑉𝐵𝑊) → (𝑥 𝑦 ∈ {𝐴, 𝐵}dom 𝑦 𝑦 ∈ {𝐴, 𝐵} (𝑦𝑥)) = (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑥) ∩ (𝐵𝑥))))
87eqcomd 2740 1 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑥) ∩ (𝐵𝑥))) = (𝑥 𝑦 ∈ {𝐴, 𝐵}dom 𝑦 𝑦 ∈ {𝐴, 𝐵} (𝑦𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cin 3923  {cpr 4601   ciin 4965  cmpt 5198  dom cdm 5651  cfv 6527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iin 4967  df-br 5117  df-opab 5179  df-mpt 5199  df-dm 5661  df-iota 6480  df-fv 6535
This theorem is referenced by:  infsubc  48905  infsubc2  48906
  Copyright terms: Public domain W3C validator