Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinfprg Structured version   Visualization version   GIF version

Theorem iinfprg 49091
Description: Indexed intersection of functions with an unordered pair index. (Contributed by Zhi Wang, 31-Oct-2025.)
Assertion
Ref Expression
iinfprg ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑥) ∩ (𝐵𝑥))) = (𝑥 𝑦 ∈ {𝐴, 𝐵}dom 𝑦 𝑦 ∈ {𝐴, 𝐵} (𝑦𝑥)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑉   𝑥,𝑊
Allowed substitution hints:   𝑉(𝑦)   𝑊(𝑦)

Proof of Theorem iinfprg
StepHypRef Expression
1 dmeq 5838 . . . 4 (𝑦 = 𝐴 → dom 𝑦 = dom 𝐴)
2 dmeq 5838 . . . 4 (𝑦 = 𝐵 → dom 𝑦 = dom 𝐵)
31, 2iinxprg 5032 . . 3 ((𝐴𝑉𝐵𝑊) → 𝑦 ∈ {𝐴, 𝐵}dom 𝑦 = (dom 𝐴 ∩ dom 𝐵))
4 fveq1 6816 . . . 4 (𝑦 = 𝐴 → (𝑦𝑥) = (𝐴𝑥))
5 fveq1 6816 . . . 4 (𝑦 = 𝐵 → (𝑦𝑥) = (𝐵𝑥))
64, 5iinxprg 5032 . . 3 ((𝐴𝑉𝐵𝑊) → 𝑦 ∈ {𝐴, 𝐵} (𝑦𝑥) = ((𝐴𝑥) ∩ (𝐵𝑥)))
73, 6mpteq12dv 5173 . 2 ((𝐴𝑉𝐵𝑊) → (𝑥 𝑦 ∈ {𝐴, 𝐵}dom 𝑦 𝑦 ∈ {𝐴, 𝐵} (𝑦𝑥)) = (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑥) ∩ (𝐵𝑥))))
87eqcomd 2737 1 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑥) ∩ (𝐵𝑥))) = (𝑥 𝑦 ∈ {𝐴, 𝐵}dom 𝑦 𝑦 ∈ {𝐴, 𝐵} (𝑦𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cin 3896  {cpr 4573   ciin 4937  cmpt 5167  dom cdm 5611  cfv 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-dm 5621  df-iota 6432  df-fv 6484
This theorem is referenced by:  infsubc  49092  infsubc2  49093
  Copyright terms: Public domain W3C validator