Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinfprg Structured version   Visualization version   GIF version

Theorem iinfprg 49044
Description: Indexed intersection of functions with an unordered pair index. (Contributed by Zhi Wang, 31-Oct-2025.)
Assertion
Ref Expression
iinfprg ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑥) ∩ (𝐵𝑥))) = (𝑥 𝑦 ∈ {𝐴, 𝐵}dom 𝑦 𝑦 ∈ {𝐴, 𝐵} (𝑦𝑥)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑉   𝑥,𝑊
Allowed substitution hints:   𝑉(𝑦)   𝑊(𝑦)

Proof of Theorem iinfprg
StepHypRef Expression
1 dmeq 5846 . . . 4 (𝑦 = 𝐴 → dom 𝑦 = dom 𝐴)
2 dmeq 5846 . . . 4 (𝑦 = 𝐵 → dom 𝑦 = dom 𝐵)
31, 2iinxprg 5038 . . 3 ((𝐴𝑉𝐵𝑊) → 𝑦 ∈ {𝐴, 𝐵}dom 𝑦 = (dom 𝐴 ∩ dom 𝐵))
4 fveq1 6821 . . . 4 (𝑦 = 𝐴 → (𝑦𝑥) = (𝐴𝑥))
5 fveq1 6821 . . . 4 (𝑦 = 𝐵 → (𝑦𝑥) = (𝐵𝑥))
64, 5iinxprg 5038 . . 3 ((𝐴𝑉𝐵𝑊) → 𝑦 ∈ {𝐴, 𝐵} (𝑦𝑥) = ((𝐴𝑥) ∩ (𝐵𝑥)))
73, 6mpteq12dv 5179 . 2 ((𝐴𝑉𝐵𝑊) → (𝑥 𝑦 ∈ {𝐴, 𝐵}dom 𝑦 𝑦 ∈ {𝐴, 𝐵} (𝑦𝑥)) = (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑥) ∩ (𝐵𝑥))))
87eqcomd 2735 1 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑥) ∩ (𝐵𝑥))) = (𝑥 𝑦 ∈ {𝐴, 𝐵}dom 𝑦 𝑦 ∈ {𝐴, 𝐵} (𝑦𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3902  {cpr 4579   ciin 4942  cmpt 5173  dom cdm 5619  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-dm 5629  df-iota 6438  df-fv 6490
This theorem is referenced by:  infsubc  49045  infsubc2  49046
  Copyright terms: Public domain W3C validator