Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infsubc Structured version   Visualization version   GIF version

Theorem infsubc 49092
Description: The intersection of two subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025.)
Assertion
Ref Expression
infsubc ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑥) ∩ (𝐵𝑥))) ∈ (Subcat‘𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem infsubc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 prnzg 4726 . . 3 (𝐴 ∈ (Subcat‘𝐶) → {𝐴, 𝐵} ≠ ∅)
21adantr 480 . 2 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → {𝐴, 𝐵} ≠ ∅)
3 simpll 766 . . . 4 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑦 ∈ {𝐴, 𝐵}) → 𝐴 ∈ (Subcat‘𝐶))
4 eleq1 2819 . . . 4 (𝑦 = 𝐴 → (𝑦 ∈ (Subcat‘𝐶) ↔ 𝐴 ∈ (Subcat‘𝐶)))
53, 4syl5ibrcom 247 . . 3 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑦 ∈ {𝐴, 𝐵}) → (𝑦 = 𝐴𝑦 ∈ (Subcat‘𝐶)))
6 simplr 768 . . . 4 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑦 ∈ {𝐴, 𝐵}) → 𝐵 ∈ (Subcat‘𝐶))
7 eleq1 2819 . . . 4 (𝑦 = 𝐵 → (𝑦 ∈ (Subcat‘𝐶) ↔ 𝐵 ∈ (Subcat‘𝐶)))
86, 7syl5ibrcom 247 . . 3 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑦 ∈ {𝐴, 𝐵}) → (𝑦 = 𝐵𝑦 ∈ (Subcat‘𝐶)))
9 elpri 4595 . . . 4 (𝑦 ∈ {𝐴, 𝐵} → (𝑦 = 𝐴𝑦 = 𝐵))
109adantl 481 . . 3 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑦 ∈ {𝐴, 𝐵}) → (𝑦 = 𝐴𝑦 = 𝐵))
115, 8, 10mpjaod 860 . 2 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑦 ∈ {𝐴, 𝐵}) → 𝑦 ∈ (Subcat‘𝐶))
12 iinfprg 49091 . 2 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑥) ∩ (𝐵𝑥))) = (𝑥 𝑦 ∈ {𝐴, 𝐵}dom 𝑦 𝑦 ∈ {𝐴, 𝐵} (𝑦𝑥)))
132, 11, 12iinfsubc 49090 1 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑥) ∩ (𝐵𝑥))) ∈ (Subcat‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  cin 3896  c0 4278  {cpr 4573  cmpt 5167  dom cdm 5611  cfv 6476  Subcatcsubc 17711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-pm 8748  df-ixp 8817  df-ssc 17712  df-subc 17714
This theorem is referenced by:  infsubc2  49093
  Copyright terms: Public domain W3C validator