| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > infsubc | Structured version Visualization version GIF version | ||
| Description: The intersection of two subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025.) |
| Ref | Expression |
|---|---|
| infsubc | ⊢ ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴‘𝑥) ∩ (𝐵‘𝑥))) ∈ (Subcat‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prnzg 4744 | . . 3 ⊢ (𝐴 ∈ (Subcat‘𝐶) → {𝐴, 𝐵} ≠ ∅) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → {𝐴, 𝐵} ≠ ∅) |
| 3 | simpll 766 | . . . 4 ⊢ (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑦 ∈ {𝐴, 𝐵}) → 𝐴 ∈ (Subcat‘𝐶)) | |
| 4 | eleq1 2817 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ (Subcat‘𝐶) ↔ 𝐴 ∈ (Subcat‘𝐶))) | |
| 5 | 3, 4 | syl5ibrcom 247 | . . 3 ⊢ (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑦 ∈ {𝐴, 𝐵}) → (𝑦 = 𝐴 → 𝑦 ∈ (Subcat‘𝐶))) |
| 6 | simplr 768 | . . . 4 ⊢ (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑦 ∈ {𝐴, 𝐵}) → 𝐵 ∈ (Subcat‘𝐶)) | |
| 7 | eleq1 2817 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ (Subcat‘𝐶) ↔ 𝐵 ∈ (Subcat‘𝐶))) | |
| 8 | 6, 7 | syl5ibrcom 247 | . . 3 ⊢ (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑦 ∈ {𝐴, 𝐵}) → (𝑦 = 𝐵 → 𝑦 ∈ (Subcat‘𝐶))) |
| 9 | elpri 4615 | . . . 4 ⊢ (𝑦 ∈ {𝐴, 𝐵} → (𝑦 = 𝐴 ∨ 𝑦 = 𝐵)) | |
| 10 | 9 | adantl 481 | . . 3 ⊢ (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑦 ∈ {𝐴, 𝐵}) → (𝑦 = 𝐴 ∨ 𝑦 = 𝐵)) |
| 11 | 5, 8, 10 | mpjaod 860 | . 2 ⊢ (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑦 ∈ {𝐴, 𝐵}) → 𝑦 ∈ (Subcat‘𝐶)) |
| 12 | iinfprg 49036 | . 2 ⊢ ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴‘𝑥) ∩ (𝐵‘𝑥))) = (𝑥 ∈ ∩ 𝑦 ∈ {𝐴, 𝐵}dom 𝑦 ↦ ∩ 𝑦 ∈ {𝐴, 𝐵} (𝑦‘𝑥))) | |
| 13 | 2, 11, 12 | iinfsubc 49035 | 1 ⊢ ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴‘𝑥) ∩ (𝐵‘𝑥))) ∈ (Subcat‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∩ cin 3915 ∅c0 4298 {cpr 4593 ↦ cmpt 5190 dom cdm 5640 ‘cfv 6513 Subcatcsubc 17777 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-pm 8804 df-ixp 8873 df-ssc 17778 df-subc 17780 |
| This theorem is referenced by: infsubc2 49038 |
| Copyright terms: Public domain | W3C validator |