Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinfsubc Structured version   Visualization version   GIF version

Theorem iinfsubc 49035
Description: Indexed intersection of subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025.)
Hypotheses
Ref Expression
iinfsubc.1 (𝜑𝐴 ≠ ∅)
iinfsubc.2 ((𝜑𝑥𝐴) → 𝐻 ∈ (Subcat‘𝐶))
iinfsubc.3 (𝜑𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))
Assertion
Ref Expression
iinfsubc (𝜑𝐾 ∈ (Subcat‘𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐶   𝑦,𝐻   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝐻(𝑥)   𝐾(𝑥,𝑦)

Proof of Theorem iinfsubc
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iinfsubc.1 . . 3 (𝜑𝐴 ≠ ∅)
2 iinfsubc.2 . . . 4 ((𝜑𝑥𝐴) → 𝐻 ∈ (Subcat‘𝐶))
3 eqid 2730 . . . 4 (Homf𝐶) = (Homf𝐶)
42, 3subcssc 17808 . . 3 ((𝜑𝑥𝐴) → 𝐻cat (Homf𝐶))
5 iinfsubc.3 . . 3 (𝜑𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))
61, 4, 5iinfssc 49034 . 2 (𝜑𝐾cat (Homf𝐶))
72adantr 480 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑎 ∈ dom dom 𝐻) → 𝐻 ∈ (Subcat‘𝐶))
8 eqidd 2731 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → dom dom 𝐻 = dom dom 𝐻)
92, 8subcfn 17809 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
109adantr 480 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑎 ∈ dom dom 𝐻) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
11 simpr 484 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑎 ∈ dom dom 𝐻) → 𝑎 ∈ dom dom 𝐻)
12 eqid 2730 . . . . . . . . . 10 (Id‘𝐶) = (Id‘𝐶)
137, 10, 11, 12subcidcl 17812 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑎 ∈ dom dom 𝐻) → ((Id‘𝐶)‘𝑎) ∈ (𝑎𝐻𝑎))
1413ex 412 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑎 ∈ dom dom 𝐻 → ((Id‘𝐶)‘𝑎) ∈ (𝑎𝐻𝑎)))
1514ralimdva 3146 . . . . . . 7 (𝜑 → (∀𝑥𝐴 𝑎 ∈ dom dom 𝐻 → ∀𝑥𝐴 ((Id‘𝐶)‘𝑎) ∈ (𝑎𝐻𝑎)))
16 eliin 4962 . . . . . . . 8 (𝑎 ∈ V → (𝑎 𝑥𝐴 dom dom 𝐻 ↔ ∀𝑥𝐴 𝑎 ∈ dom dom 𝐻))
1716elv 3455 . . . . . . 7 (𝑎 𝑥𝐴 dom dom 𝐻 ↔ ∀𝑥𝐴 𝑎 ∈ dom dom 𝐻)
18 fvex 6873 . . . . . . . 8 ((Id‘𝐶)‘𝑎) ∈ V
19 eliin 4962 . . . . . . . 8 (((Id‘𝐶)‘𝑎) ∈ V → (((Id‘𝐶)‘𝑎) ∈ 𝑥𝐴 (𝑎𝐻𝑎) ↔ ∀𝑥𝐴 ((Id‘𝐶)‘𝑎) ∈ (𝑎𝐻𝑎)))
2018, 19ax-mp 5 . . . . . . 7 (((Id‘𝐶)‘𝑎) ∈ 𝑥𝐴 (𝑎𝐻𝑎) ↔ ∀𝑥𝐴 ((Id‘𝐶)‘𝑎) ∈ (𝑎𝐻𝑎))
2115, 17, 203imtr4g 296 . . . . . 6 (𝜑 → (𝑎 𝑥𝐴 dom dom 𝐻 → ((Id‘𝐶)‘𝑎) ∈ 𝑥𝐴 (𝑎𝐻𝑎)))
2221imp 406 . . . . 5 ((𝜑𝑎 𝑥𝐴 dom dom 𝐻) → ((Id‘𝐶)‘𝑎) ∈ 𝑥𝐴 (𝑎𝐻𝑎))
231adantr 480 . . . . . 6 ((𝜑𝑎 𝑥𝐴 dom dom 𝐻) → 𝐴 ≠ ∅)
244adantlr 715 . . . . . 6 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ 𝑥𝐴) → 𝐻cat (Homf𝐶))
255adantr 480 . . . . . 6 ((𝜑𝑎 𝑥𝐴 dom dom 𝐻) → 𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))
26 eqidd 2731 . . . . . 6 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ 𝑥𝐴) → dom dom 𝐻 = dom dom 𝐻)
27 nfv 1914 . . . . . . 7 𝑥𝜑
28 nfii1 4995 . . . . . . . 8 𝑥 𝑥𝐴 dom dom 𝐻
2928nfcri 2884 . . . . . . 7 𝑥 𝑎 𝑥𝐴 dom dom 𝐻
3027, 29nfan 1899 . . . . . 6 𝑥(𝜑𝑎 𝑥𝐴 dom dom 𝐻)
31 simpr 484 . . . . . 6 ((𝜑𝑎 𝑥𝐴 dom dom 𝐻) → 𝑎 𝑥𝐴 dom dom 𝐻)
3223, 24, 25, 26, 30, 31, 31iinfssclem3 49033 . . . . 5 ((𝜑𝑎 𝑥𝐴 dom dom 𝐻) → (𝑎𝐾𝑎) = 𝑥𝐴 (𝑎𝐻𝑎))
3322, 32eleqtrrd 2832 . . . 4 ((𝜑𝑎 𝑥𝐴 dom dom 𝐻) → ((Id‘𝐶)‘𝑎) ∈ (𝑎𝐾𝑎))
34 simprl 770 . . . . . . . . . 10 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑓 ∈ (𝑎𝐾𝑏))
351ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) → 𝐴 ≠ ∅)
3624adantlr 715 . . . . . . . . . . . 12 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ 𝑥𝐴) → 𝐻cat (Homf𝐶))
375ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) → 𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))
38 eqidd 2731 . . . . . . . . . . . 12 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ 𝑥𝐴) → dom dom 𝐻 = dom dom 𝐻)
3928nfcri 2884 . . . . . . . . . . . . . 14 𝑥 𝑏 𝑥𝐴 dom dom 𝐻
4028nfcri 2884 . . . . . . . . . . . . . 14 𝑥 𝑐 𝑥𝐴 dom dom 𝐻
4139, 40nfan 1899 . . . . . . . . . . . . 13 𝑥(𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)
4230, 41nfan 1899 . . . . . . . . . . . 12 𝑥((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻))
4331adantr 480 . . . . . . . . . . . 12 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) → 𝑎 𝑥𝐴 dom dom 𝐻)
44 simprl 770 . . . . . . . . . . . 12 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) → 𝑏 𝑥𝐴 dom dom 𝐻)
4535, 36, 37, 38, 42, 43, 44iinfssclem3 49033 . . . . . . . . . . 11 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) → (𝑎𝐾𝑏) = 𝑥𝐴 (𝑎𝐻𝑏))
4645adantr 480 . . . . . . . . . 10 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → (𝑎𝐾𝑏) = 𝑥𝐴 (𝑎𝐻𝑏))
4734, 46eleqtrd 2831 . . . . . . . . 9 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑓 𝑥𝐴 (𝑎𝐻𝑏))
48 simprr 772 . . . . . . . . . 10 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑔 ∈ (𝑏𝐾𝑐))
49 simprr 772 . . . . . . . . . . . 12 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) → 𝑐 𝑥𝐴 dom dom 𝐻)
5035, 36, 37, 38, 42, 44, 49iinfssclem3 49033 . . . . . . . . . . 11 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) → (𝑏𝐾𝑐) = 𝑥𝐴 (𝑏𝐻𝑐))
5150adantr 480 . . . . . . . . . 10 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → (𝑏𝐾𝑐) = 𝑥𝐴 (𝑏𝐻𝑐))
5248, 51eleqtrd 2831 . . . . . . . . 9 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑔 𝑥𝐴 (𝑏𝐻𝑐))
5347, 52jca 511 . . . . . . . 8 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐)))
54 nfii1 4995 . . . . . . . . . . . . 13 𝑥 𝑥𝐴 (𝑎𝐻𝑏)
5554nfcri 2884 . . . . . . . . . . . 12 𝑥 𝑓 𝑥𝐴 (𝑎𝐻𝑏)
56 nfii1 4995 . . . . . . . . . . . . 13 𝑥 𝑥𝐴 (𝑏𝐻𝑐)
5756nfcri 2884 . . . . . . . . . . . 12 𝑥 𝑔 𝑥𝐴 (𝑏𝐻𝑐)
5855, 57nfan 1899 . . . . . . . . . . 11 𝑥(𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))
5942, 58nfan 1899 . . . . . . . . . 10 𝑥(((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐)))
602ad5ant15 758 . . . . . . . . . . 11 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝐻 ∈ (Subcat‘𝐶))
619ad5ant15 758 . . . . . . . . . . 11 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
62 iinss2 5023 . . . . . . . . . . . . 13 (𝑥𝐴 𝑥𝐴 dom dom 𝐻 ⊆ dom dom 𝐻)
6362adantl 481 . . . . . . . . . . . 12 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑥𝐴 dom dom 𝐻 ⊆ dom dom 𝐻)
6443ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑎 𝑥𝐴 dom dom 𝐻)
6563, 64sseldd 3949 . . . . . . . . . . 11 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑎 ∈ dom dom 𝐻)
66 eqid 2730 . . . . . . . . . . 11 (comp‘𝐶) = (comp‘𝐶)
6744ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑏 𝑥𝐴 dom dom 𝐻)
6863, 67sseldd 3949 . . . . . . . . . . 11 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑏 ∈ dom dom 𝐻)
6949ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑐 𝑥𝐴 dom dom 𝐻)
7063, 69sseldd 3949 . . . . . . . . . . 11 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑐 ∈ dom dom 𝐻)
71 iinss2 5023 . . . . . . . . . . . . 13 (𝑥𝐴 𝑥𝐴 (𝑎𝐻𝑏) ⊆ (𝑎𝐻𝑏))
7271adantl 481 . . . . . . . . . . . 12 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑥𝐴 (𝑎𝐻𝑏) ⊆ (𝑎𝐻𝑏))
73 simplrl 776 . . . . . . . . . . . 12 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑓 𝑥𝐴 (𝑎𝐻𝑏))
7472, 73sseldd 3949 . . . . . . . . . . 11 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑓 ∈ (𝑎𝐻𝑏))
75 iinss2 5023 . . . . . . . . . . . . 13 (𝑥𝐴 𝑥𝐴 (𝑏𝐻𝑐) ⊆ (𝑏𝐻𝑐))
7675adantl 481 . . . . . . . . . . . 12 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑥𝐴 (𝑏𝐻𝑐) ⊆ (𝑏𝐻𝑐))
77 simplrr 777 . . . . . . . . . . . 12 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑔 𝑥𝐴 (𝑏𝐻𝑐))
7876, 77sseldd 3949 . . . . . . . . . . 11 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑔 ∈ (𝑏𝐻𝑐))
7960, 61, 65, 66, 68, 70, 74, 78subccocl 17813 . . . . . . . . . 10 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐻𝑐))
8059, 79ralrimia 3237 . . . . . . . . 9 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) → ∀𝑥𝐴 (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐻𝑐))
81 ovex 7422 . . . . . . . . . 10 (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ V
82 eliin 4962 . . . . . . . . . 10 ((𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ V → ((𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ 𝑥𝐴 (𝑎𝐻𝑐) ↔ ∀𝑥𝐴 (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐻𝑐)))
8381, 82ax-mp 5 . . . . . . . . 9 ((𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ 𝑥𝐴 (𝑎𝐻𝑐) ↔ ∀𝑥𝐴 (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐻𝑐))
8480, 83sylibr 234 . . . . . . . 8 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) → (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ 𝑥𝐴 (𝑎𝐻𝑐))
8553, 84syldan 591 . . . . . . 7 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ 𝑥𝐴 (𝑎𝐻𝑐))
8635, 36, 37, 38, 42, 43, 49iinfssclem3 49033 . . . . . . . 8 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) → (𝑎𝐾𝑐) = 𝑥𝐴 (𝑎𝐻𝑐))
8786adantr 480 . . . . . . 7 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → (𝑎𝐾𝑐) = 𝑥𝐴 (𝑎𝐻𝑐))
8885, 87eleqtrrd 2832 . . . . . 6 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐾𝑐))
8988ralrimivva 3181 . . . . 5 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) → ∀𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐾𝑐))
9089ralrimivva 3181 . . . 4 ((𝜑𝑎 𝑥𝐴 dom dom 𝐻) → ∀𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐾𝑐))
9133, 90jca 511 . . 3 ((𝜑𝑎 𝑥𝐴 dom dom 𝐻) → (((Id‘𝐶)‘𝑎) ∈ (𝑎𝐾𝑎) ∧ ∀𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐾𝑐)))
9291ralrimiva 3126 . 2 (𝜑 → ∀𝑎 𝑥𝐴 dom dom 𝐻(((Id‘𝐶)‘𝑎) ∈ (𝑎𝐾𝑎) ∧ ∀𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐾𝑐)))
93 n0 4318 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
941, 93sylib 218 . . . 4 (𝜑 → ∃𝑥 𝑥𝐴)
95 subcrcl 17784 . . . . 5 (𝐻 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat)
962, 95syl 17 . . . 4 ((𝜑𝑥𝐴) → 𝐶 ∈ Cat)
9794, 96exlimddv 1935 . . 3 (𝜑𝐶 ∈ Cat)
981, 4, 5, 8, 27iinfssclem2 49032 . . 3 (𝜑𝐾 Fn ( 𝑥𝐴 dom dom 𝐻 × 𝑥𝐴 dom dom 𝐻))
993, 12, 66, 97, 98issubc2 17804 . 2 (𝜑 → (𝐾 ∈ (Subcat‘𝐶) ↔ (𝐾cat (Homf𝐶) ∧ ∀𝑎 𝑥𝐴 dom dom 𝐻(((Id‘𝐶)‘𝑎) ∈ (𝑎𝐾𝑎) ∧ ∀𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐾𝑐)))))
1006, 92, 99mpbir2and 713 1 (𝜑𝐾 ∈ (Subcat‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  Vcvv 3450  wss 3916  c0 4298  cop 4597   ciin 4958   class class class wbr 5109  cmpt 5190   × cxp 5638  dom cdm 5640   Fn wfn 6508  cfv 6513  (class class class)co 7389  compcco 17238  Catccat 17631  Idccid 17632  Homf chomf 17633  cat cssc 17775  Subcatcsubc 17777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-pm 8804  df-ixp 8873  df-ssc 17778  df-subc 17780
This theorem is referenced by:  infsubc  49037
  Copyright terms: Public domain W3C validator