Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinfsubc Structured version   Visualization version   GIF version

Theorem iinfsubc 49090
Description: Indexed intersection of subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025.)
Hypotheses
Ref Expression
iinfsubc.1 (𝜑𝐴 ≠ ∅)
iinfsubc.2 ((𝜑𝑥𝐴) → 𝐻 ∈ (Subcat‘𝐶))
iinfsubc.3 (𝜑𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))
Assertion
Ref Expression
iinfsubc (𝜑𝐾 ∈ (Subcat‘𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐶   𝑦,𝐻   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝐻(𝑥)   𝐾(𝑥,𝑦)

Proof of Theorem iinfsubc
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iinfsubc.1 . . 3 (𝜑𝐴 ≠ ∅)
2 iinfsubc.2 . . . 4 ((𝜑𝑥𝐴) → 𝐻 ∈ (Subcat‘𝐶))
3 eqid 2731 . . . 4 (Homf𝐶) = (Homf𝐶)
42, 3subcssc 17742 . . 3 ((𝜑𝑥𝐴) → 𝐻cat (Homf𝐶))
5 iinfsubc.3 . . 3 (𝜑𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))
61, 4, 5iinfssc 49089 . 2 (𝜑𝐾cat (Homf𝐶))
72adantr 480 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑎 ∈ dom dom 𝐻) → 𝐻 ∈ (Subcat‘𝐶))
8 eqidd 2732 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → dom dom 𝐻 = dom dom 𝐻)
92, 8subcfn 17743 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
109adantr 480 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑎 ∈ dom dom 𝐻) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
11 simpr 484 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑎 ∈ dom dom 𝐻) → 𝑎 ∈ dom dom 𝐻)
12 eqid 2731 . . . . . . . . . 10 (Id‘𝐶) = (Id‘𝐶)
137, 10, 11, 12subcidcl 17746 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑎 ∈ dom dom 𝐻) → ((Id‘𝐶)‘𝑎) ∈ (𝑎𝐻𝑎))
1413ex 412 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑎 ∈ dom dom 𝐻 → ((Id‘𝐶)‘𝑎) ∈ (𝑎𝐻𝑎)))
1514ralimdva 3144 . . . . . . 7 (𝜑 → (∀𝑥𝐴 𝑎 ∈ dom dom 𝐻 → ∀𝑥𝐴 ((Id‘𝐶)‘𝑎) ∈ (𝑎𝐻𝑎)))
16 eliin 4941 . . . . . . . 8 (𝑎 ∈ V → (𝑎 𝑥𝐴 dom dom 𝐻 ↔ ∀𝑥𝐴 𝑎 ∈ dom dom 𝐻))
1716elv 3441 . . . . . . 7 (𝑎 𝑥𝐴 dom dom 𝐻 ↔ ∀𝑥𝐴 𝑎 ∈ dom dom 𝐻)
18 fvex 6830 . . . . . . . 8 ((Id‘𝐶)‘𝑎) ∈ V
19 eliin 4941 . . . . . . . 8 (((Id‘𝐶)‘𝑎) ∈ V → (((Id‘𝐶)‘𝑎) ∈ 𝑥𝐴 (𝑎𝐻𝑎) ↔ ∀𝑥𝐴 ((Id‘𝐶)‘𝑎) ∈ (𝑎𝐻𝑎)))
2018, 19ax-mp 5 . . . . . . 7 (((Id‘𝐶)‘𝑎) ∈ 𝑥𝐴 (𝑎𝐻𝑎) ↔ ∀𝑥𝐴 ((Id‘𝐶)‘𝑎) ∈ (𝑎𝐻𝑎))
2115, 17, 203imtr4g 296 . . . . . 6 (𝜑 → (𝑎 𝑥𝐴 dom dom 𝐻 → ((Id‘𝐶)‘𝑎) ∈ 𝑥𝐴 (𝑎𝐻𝑎)))
2221imp 406 . . . . 5 ((𝜑𝑎 𝑥𝐴 dom dom 𝐻) → ((Id‘𝐶)‘𝑎) ∈ 𝑥𝐴 (𝑎𝐻𝑎))
231adantr 480 . . . . . 6 ((𝜑𝑎 𝑥𝐴 dom dom 𝐻) → 𝐴 ≠ ∅)
244adantlr 715 . . . . . 6 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ 𝑥𝐴) → 𝐻cat (Homf𝐶))
255adantr 480 . . . . . 6 ((𝜑𝑎 𝑥𝐴 dom dom 𝐻) → 𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))
26 eqidd 2732 . . . . . 6 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ 𝑥𝐴) → dom dom 𝐻 = dom dom 𝐻)
27 nfv 1915 . . . . . . 7 𝑥𝜑
28 nfii1 4974 . . . . . . . 8 𝑥 𝑥𝐴 dom dom 𝐻
2928nfcri 2886 . . . . . . 7 𝑥 𝑎 𝑥𝐴 dom dom 𝐻
3027, 29nfan 1900 . . . . . 6 𝑥(𝜑𝑎 𝑥𝐴 dom dom 𝐻)
31 simpr 484 . . . . . 6 ((𝜑𝑎 𝑥𝐴 dom dom 𝐻) → 𝑎 𝑥𝐴 dom dom 𝐻)
3223, 24, 25, 26, 30, 31, 31iinfssclem3 49088 . . . . 5 ((𝜑𝑎 𝑥𝐴 dom dom 𝐻) → (𝑎𝐾𝑎) = 𝑥𝐴 (𝑎𝐻𝑎))
3322, 32eleqtrrd 2834 . . . 4 ((𝜑𝑎 𝑥𝐴 dom dom 𝐻) → ((Id‘𝐶)‘𝑎) ∈ (𝑎𝐾𝑎))
34 simprl 770 . . . . . . . . . 10 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑓 ∈ (𝑎𝐾𝑏))
351ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) → 𝐴 ≠ ∅)
3624adantlr 715 . . . . . . . . . . . 12 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ 𝑥𝐴) → 𝐻cat (Homf𝐶))
375ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) → 𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))
38 eqidd 2732 . . . . . . . . . . . 12 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ 𝑥𝐴) → dom dom 𝐻 = dom dom 𝐻)
3928nfcri 2886 . . . . . . . . . . . . . 14 𝑥 𝑏 𝑥𝐴 dom dom 𝐻
4028nfcri 2886 . . . . . . . . . . . . . 14 𝑥 𝑐 𝑥𝐴 dom dom 𝐻
4139, 40nfan 1900 . . . . . . . . . . . . 13 𝑥(𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)
4230, 41nfan 1900 . . . . . . . . . . . 12 𝑥((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻))
4331adantr 480 . . . . . . . . . . . 12 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) → 𝑎 𝑥𝐴 dom dom 𝐻)
44 simprl 770 . . . . . . . . . . . 12 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) → 𝑏 𝑥𝐴 dom dom 𝐻)
4535, 36, 37, 38, 42, 43, 44iinfssclem3 49088 . . . . . . . . . . 11 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) → (𝑎𝐾𝑏) = 𝑥𝐴 (𝑎𝐻𝑏))
4645adantr 480 . . . . . . . . . 10 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → (𝑎𝐾𝑏) = 𝑥𝐴 (𝑎𝐻𝑏))
4734, 46eleqtrd 2833 . . . . . . . . 9 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑓 𝑥𝐴 (𝑎𝐻𝑏))
48 simprr 772 . . . . . . . . . 10 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑔 ∈ (𝑏𝐾𝑐))
49 simprr 772 . . . . . . . . . . . 12 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) → 𝑐 𝑥𝐴 dom dom 𝐻)
5035, 36, 37, 38, 42, 44, 49iinfssclem3 49088 . . . . . . . . . . 11 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) → (𝑏𝐾𝑐) = 𝑥𝐴 (𝑏𝐻𝑐))
5150adantr 480 . . . . . . . . . 10 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → (𝑏𝐾𝑐) = 𝑥𝐴 (𝑏𝐻𝑐))
5248, 51eleqtrd 2833 . . . . . . . . 9 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑔 𝑥𝐴 (𝑏𝐻𝑐))
5347, 52jca 511 . . . . . . . 8 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐)))
54 nfii1 4974 . . . . . . . . . . . . 13 𝑥 𝑥𝐴 (𝑎𝐻𝑏)
5554nfcri 2886 . . . . . . . . . . . 12 𝑥 𝑓 𝑥𝐴 (𝑎𝐻𝑏)
56 nfii1 4974 . . . . . . . . . . . . 13 𝑥 𝑥𝐴 (𝑏𝐻𝑐)
5756nfcri 2886 . . . . . . . . . . . 12 𝑥 𝑔 𝑥𝐴 (𝑏𝐻𝑐)
5855, 57nfan 1900 . . . . . . . . . . 11 𝑥(𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))
5942, 58nfan 1900 . . . . . . . . . 10 𝑥(((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐)))
602ad5ant15 758 . . . . . . . . . . 11 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝐻 ∈ (Subcat‘𝐶))
619ad5ant15 758 . . . . . . . . . . 11 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
62 iinss2 5001 . . . . . . . . . . . . 13 (𝑥𝐴 𝑥𝐴 dom dom 𝐻 ⊆ dom dom 𝐻)
6362adantl 481 . . . . . . . . . . . 12 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑥𝐴 dom dom 𝐻 ⊆ dom dom 𝐻)
6443ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑎 𝑥𝐴 dom dom 𝐻)
6563, 64sseldd 3930 . . . . . . . . . . 11 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑎 ∈ dom dom 𝐻)
66 eqid 2731 . . . . . . . . . . 11 (comp‘𝐶) = (comp‘𝐶)
6744ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑏 𝑥𝐴 dom dom 𝐻)
6863, 67sseldd 3930 . . . . . . . . . . 11 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑏 ∈ dom dom 𝐻)
6949ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑐 𝑥𝐴 dom dom 𝐻)
7063, 69sseldd 3930 . . . . . . . . . . 11 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑐 ∈ dom dom 𝐻)
71 iinss2 5001 . . . . . . . . . . . . 13 (𝑥𝐴 𝑥𝐴 (𝑎𝐻𝑏) ⊆ (𝑎𝐻𝑏))
7271adantl 481 . . . . . . . . . . . 12 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑥𝐴 (𝑎𝐻𝑏) ⊆ (𝑎𝐻𝑏))
73 simplrl 776 . . . . . . . . . . . 12 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑓 𝑥𝐴 (𝑎𝐻𝑏))
7472, 73sseldd 3930 . . . . . . . . . . 11 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑓 ∈ (𝑎𝐻𝑏))
75 iinss2 5001 . . . . . . . . . . . . 13 (𝑥𝐴 𝑥𝐴 (𝑏𝐻𝑐) ⊆ (𝑏𝐻𝑐))
7675adantl 481 . . . . . . . . . . . 12 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑥𝐴 (𝑏𝐻𝑐) ⊆ (𝑏𝐻𝑐))
77 simplrr 777 . . . . . . . . . . . 12 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑔 𝑥𝐴 (𝑏𝐻𝑐))
7876, 77sseldd 3930 . . . . . . . . . . 11 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑔 ∈ (𝑏𝐻𝑐))
7960, 61, 65, 66, 68, 70, 74, 78subccocl 17747 . . . . . . . . . 10 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐻𝑐))
8059, 79ralrimia 3231 . . . . . . . . 9 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) → ∀𝑥𝐴 (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐻𝑐))
81 ovex 7374 . . . . . . . . . 10 (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ V
82 eliin 4941 . . . . . . . . . 10 ((𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ V → ((𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ 𝑥𝐴 (𝑎𝐻𝑐) ↔ ∀𝑥𝐴 (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐻𝑐)))
8381, 82ax-mp 5 . . . . . . . . 9 ((𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ 𝑥𝐴 (𝑎𝐻𝑐) ↔ ∀𝑥𝐴 (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐻𝑐))
8480, 83sylibr 234 . . . . . . . 8 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) → (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ 𝑥𝐴 (𝑎𝐻𝑐))
8553, 84syldan 591 . . . . . . 7 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ 𝑥𝐴 (𝑎𝐻𝑐))
8635, 36, 37, 38, 42, 43, 49iinfssclem3 49088 . . . . . . . 8 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) → (𝑎𝐾𝑐) = 𝑥𝐴 (𝑎𝐻𝑐))
8786adantr 480 . . . . . . 7 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → (𝑎𝐾𝑐) = 𝑥𝐴 (𝑎𝐻𝑐))
8885, 87eleqtrrd 2834 . . . . . 6 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐾𝑐))
8988ralrimivva 3175 . . . . 5 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) → ∀𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐾𝑐))
9089ralrimivva 3175 . . . 4 ((𝜑𝑎 𝑥𝐴 dom dom 𝐻) → ∀𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐾𝑐))
9133, 90jca 511 . . 3 ((𝜑𝑎 𝑥𝐴 dom dom 𝐻) → (((Id‘𝐶)‘𝑎) ∈ (𝑎𝐾𝑎) ∧ ∀𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐾𝑐)))
9291ralrimiva 3124 . 2 (𝜑 → ∀𝑎 𝑥𝐴 dom dom 𝐻(((Id‘𝐶)‘𝑎) ∈ (𝑎𝐾𝑎) ∧ ∀𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐾𝑐)))
93 n0 4298 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
941, 93sylib 218 . . . 4 (𝜑 → ∃𝑥 𝑥𝐴)
95 subcrcl 17718 . . . . 5 (𝐻 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat)
962, 95syl 17 . . . 4 ((𝜑𝑥𝐴) → 𝐶 ∈ Cat)
9794, 96exlimddv 1936 . . 3 (𝜑𝐶 ∈ Cat)
981, 4, 5, 8, 27iinfssclem2 49087 . . 3 (𝜑𝐾 Fn ( 𝑥𝐴 dom dom 𝐻 × 𝑥𝐴 dom dom 𝐻))
993, 12, 66, 97, 98issubc2 17738 . 2 (𝜑 → (𝐾 ∈ (Subcat‘𝐶) ↔ (𝐾cat (Homf𝐶) ∧ ∀𝑎 𝑥𝐴 dom dom 𝐻(((Id‘𝐶)‘𝑎) ∈ (𝑎𝐾𝑎) ∧ ∀𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐾𝑐)))))
1006, 92, 99mpbir2and 713 1 (𝜑𝐾 ∈ (Subcat‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  Vcvv 3436  wss 3897  c0 4278  cop 4577   ciin 4937   class class class wbr 5086  cmpt 5167   × cxp 5609  dom cdm 5611   Fn wfn 6471  cfv 6476  (class class class)co 7341  compcco 17168  Catccat 17565  Idccid 17566  Homf chomf 17567  cat cssc 17709  Subcatcsubc 17711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-pm 8748  df-ixp 8817  df-ssc 17712  df-subc 17714
This theorem is referenced by:  infsubc  49092
  Copyright terms: Public domain W3C validator