Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinfsubc Structured version   Visualization version   GIF version

Theorem iinfsubc 48931
Description: Indexed intersection of subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025.)
Hypotheses
Ref Expression
iinfsubc.1 (𝜑𝐴 ≠ ∅)
iinfsubc.2 ((𝜑𝑥𝐴) → 𝐻 ∈ (Subcat‘𝐶))
iinfsubc.3 (𝜑𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))
Assertion
Ref Expression
iinfsubc (𝜑𝐾 ∈ (Subcat‘𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐶   𝑦,𝐻   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝐻(𝑥)   𝐾(𝑥,𝑦)

Proof of Theorem iinfsubc
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iinfsubc.1 . . 3 (𝜑𝐴 ≠ ∅)
2 iinfsubc.2 . . . 4 ((𝜑𝑥𝐴) → 𝐻 ∈ (Subcat‘𝐶))
3 eqid 2734 . . . 4 (Homf𝐶) = (Homf𝐶)
42, 3subcssc 17857 . . 3 ((𝜑𝑥𝐴) → 𝐻cat (Homf𝐶))
5 iinfsubc.3 . . 3 (𝜑𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))
61, 4, 5iinfssc 48930 . 2 (𝜑𝐾cat (Homf𝐶))
72adantr 480 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑎 ∈ dom dom 𝐻) → 𝐻 ∈ (Subcat‘𝐶))
8 eqidd 2735 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → dom dom 𝐻 = dom dom 𝐻)
92, 8subcfn 17858 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
109adantr 480 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑎 ∈ dom dom 𝐻) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
11 simpr 484 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑎 ∈ dom dom 𝐻) → 𝑎 ∈ dom dom 𝐻)
12 eqid 2734 . . . . . . . . . 10 (Id‘𝐶) = (Id‘𝐶)
137, 10, 11, 12subcidcl 17861 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑎 ∈ dom dom 𝐻) → ((Id‘𝐶)‘𝑎) ∈ (𝑎𝐻𝑎))
1413ex 412 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑎 ∈ dom dom 𝐻 → ((Id‘𝐶)‘𝑎) ∈ (𝑎𝐻𝑎)))
1514ralimdva 3154 . . . . . . 7 (𝜑 → (∀𝑥𝐴 𝑎 ∈ dom dom 𝐻 → ∀𝑥𝐴 ((Id‘𝐶)‘𝑎) ∈ (𝑎𝐻𝑎)))
16 eliin 4976 . . . . . . . 8 (𝑎 ∈ V → (𝑎 𝑥𝐴 dom dom 𝐻 ↔ ∀𝑥𝐴 𝑎 ∈ dom dom 𝐻))
1716elv 3468 . . . . . . 7 (𝑎 𝑥𝐴 dom dom 𝐻 ↔ ∀𝑥𝐴 𝑎 ∈ dom dom 𝐻)
18 fvex 6899 . . . . . . . 8 ((Id‘𝐶)‘𝑎) ∈ V
19 eliin 4976 . . . . . . . 8 (((Id‘𝐶)‘𝑎) ∈ V → (((Id‘𝐶)‘𝑎) ∈ 𝑥𝐴 (𝑎𝐻𝑎) ↔ ∀𝑥𝐴 ((Id‘𝐶)‘𝑎) ∈ (𝑎𝐻𝑎)))
2018, 19ax-mp 5 . . . . . . 7 (((Id‘𝐶)‘𝑎) ∈ 𝑥𝐴 (𝑎𝐻𝑎) ↔ ∀𝑥𝐴 ((Id‘𝐶)‘𝑎) ∈ (𝑎𝐻𝑎))
2115, 17, 203imtr4g 296 . . . . . 6 (𝜑 → (𝑎 𝑥𝐴 dom dom 𝐻 → ((Id‘𝐶)‘𝑎) ∈ 𝑥𝐴 (𝑎𝐻𝑎)))
2221imp 406 . . . . 5 ((𝜑𝑎 𝑥𝐴 dom dom 𝐻) → ((Id‘𝐶)‘𝑎) ∈ 𝑥𝐴 (𝑎𝐻𝑎))
231adantr 480 . . . . . 6 ((𝜑𝑎 𝑥𝐴 dom dom 𝐻) → 𝐴 ≠ ∅)
244adantlr 715 . . . . . 6 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ 𝑥𝐴) → 𝐻cat (Homf𝐶))
255adantr 480 . . . . . 6 ((𝜑𝑎 𝑥𝐴 dom dom 𝐻) → 𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))
26 eqidd 2735 . . . . . 6 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ 𝑥𝐴) → dom dom 𝐻 = dom dom 𝐻)
27 nfv 1913 . . . . . . 7 𝑥𝜑
28 nfii1 5009 . . . . . . . 8 𝑥 𝑥𝐴 dom dom 𝐻
2928nfcri 2889 . . . . . . 7 𝑥 𝑎 𝑥𝐴 dom dom 𝐻
3027, 29nfan 1898 . . . . . 6 𝑥(𝜑𝑎 𝑥𝐴 dom dom 𝐻)
31 simpr 484 . . . . . 6 ((𝜑𝑎 𝑥𝐴 dom dom 𝐻) → 𝑎 𝑥𝐴 dom dom 𝐻)
3223, 24, 25, 26, 30, 31, 31iinfssclem3 48929 . . . . 5 ((𝜑𝑎 𝑥𝐴 dom dom 𝐻) → (𝑎𝐾𝑎) = 𝑥𝐴 (𝑎𝐻𝑎))
3322, 32eleqtrrd 2836 . . . 4 ((𝜑𝑎 𝑥𝐴 dom dom 𝐻) → ((Id‘𝐶)‘𝑎) ∈ (𝑎𝐾𝑎))
34 simprl 770 . . . . . . . . . 10 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑓 ∈ (𝑎𝐾𝑏))
351ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) → 𝐴 ≠ ∅)
3624adantlr 715 . . . . . . . . . . . 12 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ 𝑥𝐴) → 𝐻cat (Homf𝐶))
375ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) → 𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))
38 eqidd 2735 . . . . . . . . . . . 12 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ 𝑥𝐴) → dom dom 𝐻 = dom dom 𝐻)
3928nfcri 2889 . . . . . . . . . . . . . 14 𝑥 𝑏 𝑥𝐴 dom dom 𝐻
4028nfcri 2889 . . . . . . . . . . . . . 14 𝑥 𝑐 𝑥𝐴 dom dom 𝐻
4139, 40nfan 1898 . . . . . . . . . . . . 13 𝑥(𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)
4230, 41nfan 1898 . . . . . . . . . . . 12 𝑥((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻))
4331adantr 480 . . . . . . . . . . . 12 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) → 𝑎 𝑥𝐴 dom dom 𝐻)
44 simprl 770 . . . . . . . . . . . 12 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) → 𝑏 𝑥𝐴 dom dom 𝐻)
4535, 36, 37, 38, 42, 43, 44iinfssclem3 48929 . . . . . . . . . . 11 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) → (𝑎𝐾𝑏) = 𝑥𝐴 (𝑎𝐻𝑏))
4645adantr 480 . . . . . . . . . 10 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → (𝑎𝐾𝑏) = 𝑥𝐴 (𝑎𝐻𝑏))
4734, 46eleqtrd 2835 . . . . . . . . 9 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑓 𝑥𝐴 (𝑎𝐻𝑏))
48 simprr 772 . . . . . . . . . 10 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑔 ∈ (𝑏𝐾𝑐))
49 simprr 772 . . . . . . . . . . . 12 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) → 𝑐 𝑥𝐴 dom dom 𝐻)
5035, 36, 37, 38, 42, 44, 49iinfssclem3 48929 . . . . . . . . . . 11 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) → (𝑏𝐾𝑐) = 𝑥𝐴 (𝑏𝐻𝑐))
5150adantr 480 . . . . . . . . . 10 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → (𝑏𝐾𝑐) = 𝑥𝐴 (𝑏𝐻𝑐))
5248, 51eleqtrd 2835 . . . . . . . . 9 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑔 𝑥𝐴 (𝑏𝐻𝑐))
5347, 52jca 511 . . . . . . . 8 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐)))
54 nfii1 5009 . . . . . . . . . . . . 13 𝑥 𝑥𝐴 (𝑎𝐻𝑏)
5554nfcri 2889 . . . . . . . . . . . 12 𝑥 𝑓 𝑥𝐴 (𝑎𝐻𝑏)
56 nfii1 5009 . . . . . . . . . . . . 13 𝑥 𝑥𝐴 (𝑏𝐻𝑐)
5756nfcri 2889 . . . . . . . . . . . 12 𝑥 𝑔 𝑥𝐴 (𝑏𝐻𝑐)
5855, 57nfan 1898 . . . . . . . . . . 11 𝑥(𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))
5942, 58nfan 1898 . . . . . . . . . 10 𝑥(((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐)))
602ad5ant15 758 . . . . . . . . . . 11 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝐻 ∈ (Subcat‘𝐶))
619ad5ant15 758 . . . . . . . . . . 11 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
62 iinss2 5037 . . . . . . . . . . . . 13 (𝑥𝐴 𝑥𝐴 dom dom 𝐻 ⊆ dom dom 𝐻)
6362adantl 481 . . . . . . . . . . . 12 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑥𝐴 dom dom 𝐻 ⊆ dom dom 𝐻)
6443ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑎 𝑥𝐴 dom dom 𝐻)
6563, 64sseldd 3964 . . . . . . . . . . 11 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑎 ∈ dom dom 𝐻)
66 eqid 2734 . . . . . . . . . . 11 (comp‘𝐶) = (comp‘𝐶)
6744ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑏 𝑥𝐴 dom dom 𝐻)
6863, 67sseldd 3964 . . . . . . . . . . 11 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑏 ∈ dom dom 𝐻)
6949ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑐 𝑥𝐴 dom dom 𝐻)
7063, 69sseldd 3964 . . . . . . . . . . 11 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑐 ∈ dom dom 𝐻)
71 iinss2 5037 . . . . . . . . . . . . 13 (𝑥𝐴 𝑥𝐴 (𝑎𝐻𝑏) ⊆ (𝑎𝐻𝑏))
7271adantl 481 . . . . . . . . . . . 12 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑥𝐴 (𝑎𝐻𝑏) ⊆ (𝑎𝐻𝑏))
73 simplrl 776 . . . . . . . . . . . 12 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑓 𝑥𝐴 (𝑎𝐻𝑏))
7472, 73sseldd 3964 . . . . . . . . . . 11 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑓 ∈ (𝑎𝐻𝑏))
75 iinss2 5037 . . . . . . . . . . . . 13 (𝑥𝐴 𝑥𝐴 (𝑏𝐻𝑐) ⊆ (𝑏𝐻𝑐))
7675adantl 481 . . . . . . . . . . . 12 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑥𝐴 (𝑏𝐻𝑐) ⊆ (𝑏𝐻𝑐))
77 simplrr 777 . . . . . . . . . . . 12 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑔 𝑥𝐴 (𝑏𝐻𝑐))
7876, 77sseldd 3964 . . . . . . . . . . 11 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → 𝑔 ∈ (𝑏𝐻𝑐))
7960, 61, 65, 66, 68, 70, 74, 78subccocl 17862 . . . . . . . . . 10 (((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) ∧ 𝑥𝐴) → (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐻𝑐))
8059, 79ralrimia 3244 . . . . . . . . 9 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) → ∀𝑥𝐴 (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐻𝑐))
81 ovex 7446 . . . . . . . . . 10 (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ V
82 eliin 4976 . . . . . . . . . 10 ((𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ V → ((𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ 𝑥𝐴 (𝑎𝐻𝑐) ↔ ∀𝑥𝐴 (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐻𝑐)))
8381, 82ax-mp 5 . . . . . . . . 9 ((𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ 𝑥𝐴 (𝑎𝐻𝑐) ↔ ∀𝑥𝐴 (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐻𝑐))
8480, 83sylibr 234 . . . . . . . 8 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 𝑥𝐴 (𝑎𝐻𝑏) ∧ 𝑔 𝑥𝐴 (𝑏𝐻𝑐))) → (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ 𝑥𝐴 (𝑎𝐻𝑐))
8553, 84syldan 591 . . . . . . 7 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ 𝑥𝐴 (𝑎𝐻𝑐))
8635, 36, 37, 38, 42, 43, 49iinfssclem3 48929 . . . . . . . 8 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) → (𝑎𝐾𝑐) = 𝑥𝐴 (𝑎𝐻𝑐))
8786adantr 480 . . . . . . 7 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → (𝑎𝐾𝑐) = 𝑥𝐴 (𝑎𝐻𝑐))
8885, 87eleqtrrd 2836 . . . . . 6 ((((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐾𝑐))
8988ralrimivva 3189 . . . . 5 (((𝜑𝑎 𝑥𝐴 dom dom 𝐻) ∧ (𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻)) → ∀𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐾𝑐))
9089ralrimivva 3189 . . . 4 ((𝜑𝑎 𝑥𝐴 dom dom 𝐻) → ∀𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐾𝑐))
9133, 90jca 511 . . 3 ((𝜑𝑎 𝑥𝐴 dom dom 𝐻) → (((Id‘𝐶)‘𝑎) ∈ (𝑎𝐾𝑎) ∧ ∀𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐾𝑐)))
9291ralrimiva 3133 . 2 (𝜑 → ∀𝑎 𝑥𝐴 dom dom 𝐻(((Id‘𝐶)‘𝑎) ∈ (𝑎𝐾𝑎) ∧ ∀𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐾𝑐)))
93 n0 4333 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
941, 93sylib 218 . . . 4 (𝜑 → ∃𝑥 𝑥𝐴)
95 subcrcl 17832 . . . . 5 (𝐻 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat)
962, 95syl 17 . . . 4 ((𝜑𝑥𝐴) → 𝐶 ∈ Cat)
9794, 96exlimddv 1934 . . 3 (𝜑𝐶 ∈ Cat)
981, 4, 5, 8, 27iinfssclem2 48928 . . 3 (𝜑𝐾 Fn ( 𝑥𝐴 dom dom 𝐻 × 𝑥𝐴 dom dom 𝐻))
993, 12, 66, 97, 98issubc2 17853 . 2 (𝜑 → (𝐾 ∈ (Subcat‘𝐶) ↔ (𝐾cat (Homf𝐶) ∧ ∀𝑎 𝑥𝐴 dom dom 𝐻(((Id‘𝐶)‘𝑎) ∈ (𝑎𝐾𝑎) ∧ ∀𝑏 𝑥𝐴 dom dom 𝐻𝑐 𝑥𝐴 dom dom 𝐻𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐾𝑐)))))
1006, 92, 99mpbir2and 713 1 (𝜑𝐾 ∈ (Subcat‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  wne 2931  wral 3050  Vcvv 3463  wss 3931  c0 4313  cop 4612   ciin 4972   class class class wbr 5123  cmpt 5205   × cxp 5663  dom cdm 5665   Fn wfn 6536  cfv 6541  (class class class)co 7413  compcco 17286  Catccat 17679  Idccid 17680  Homf chomf 17681  cat cssc 17823  Subcatcsubc 17825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-pm 8851  df-ixp 8920  df-ssc 17826  df-subc 17828
This theorem is referenced by:  infsubc  48933
  Copyright terms: Public domain W3C validator