Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infsubc2 Structured version   Visualization version   GIF version

Theorem infsubc2 49093
Description: The intersection of two subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025.)
Assertion
Ref Expression
infsubc2 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑥 ∈ (dom dom 𝐴 ∩ dom dom 𝐵), 𝑦 ∈ (dom dom 𝐴 ∩ dom dom 𝐵) ↦ ((𝑥𝐴𝑦) ∩ (𝑥𝐵𝑦))) ∈ (Subcat‘𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem infsubc2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prnzg 4726 . . . . 5 (𝐴 ∈ (Subcat‘𝐶) → {𝐴, 𝐵} ≠ ∅)
21adantr 480 . . . 4 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → {𝐴, 𝐵} ≠ ∅)
3 simpll 766 . . . . . . 7 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → 𝐴 ∈ (Subcat‘𝐶))
4 eqid 2731 . . . . . . 7 (Homf𝐶) = (Homf𝐶)
53, 4subcssc 17742 . . . . . 6 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → 𝐴cat (Homf𝐶))
6 breq1 5089 . . . . . 6 (𝑤 = 𝐴 → (𝑤cat (Homf𝐶) ↔ 𝐴cat (Homf𝐶)))
75, 6syl5ibrcom 247 . . . . 5 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → (𝑤 = 𝐴𝑤cat (Homf𝐶)))
8 simplr 768 . . . . . . 7 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → 𝐵 ∈ (Subcat‘𝐶))
98, 4subcssc 17742 . . . . . 6 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → 𝐵cat (Homf𝐶))
10 breq1 5089 . . . . . 6 (𝑤 = 𝐵 → (𝑤cat (Homf𝐶) ↔ 𝐵cat (Homf𝐶)))
119, 10syl5ibrcom 247 . . . . 5 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → (𝑤 = 𝐵𝑤cat (Homf𝐶)))
12 elpri 4595 . . . . . 6 (𝑤 ∈ {𝐴, 𝐵} → (𝑤 = 𝐴𝑤 = 𝐵))
1312adantl 481 . . . . 5 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → (𝑤 = 𝐴𝑤 = 𝐵))
147, 11, 13mpjaod 860 . . . 4 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → 𝑤cat (Homf𝐶))
15 iinfprg 49091 . . . 4 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑧 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑧) ∩ (𝐵𝑧))) = (𝑧 𝑤 ∈ {𝐴, 𝐵}dom 𝑤 𝑤 ∈ {𝐴, 𝐵} (𝑤𝑧)))
16 eqidd 2732 . . . 4 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → dom dom 𝑤 = dom dom 𝑤)
17 nfv 1915 . . . 4 𝑤(𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶))
182, 14, 15, 16, 17iinfssclem1 49086 . . 3 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑧 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑧) ∩ (𝐵𝑧))) = (𝑥 𝑤 ∈ {𝐴, 𝐵}dom dom 𝑤, 𝑦 𝑤 ∈ {𝐴, 𝐵}dom dom 𝑤 𝑤 ∈ {𝐴, 𝐵} (𝑥𝑤𝑦)))
19 dmeq 5838 . . . . . 6 (𝑤 = 𝐴 → dom 𝑤 = dom 𝐴)
2019dmeqd 5840 . . . . 5 (𝑤 = 𝐴 → dom dom 𝑤 = dom dom 𝐴)
21 dmeq 5838 . . . . . 6 (𝑤 = 𝐵 → dom 𝑤 = dom 𝐵)
2221dmeqd 5840 . . . . 5 (𝑤 = 𝐵 → dom dom 𝑤 = dom dom 𝐵)
2320, 22iinxprg 5032 . . . 4 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → 𝑤 ∈ {𝐴, 𝐵}dom dom 𝑤 = (dom dom 𝐴 ∩ dom dom 𝐵))
24 oveq 7347 . . . . 5 (𝑤 = 𝐴 → (𝑥𝑤𝑦) = (𝑥𝐴𝑦))
25 oveq 7347 . . . . 5 (𝑤 = 𝐵 → (𝑥𝑤𝑦) = (𝑥𝐵𝑦))
2624, 25iinxprg 5032 . . . 4 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → 𝑤 ∈ {𝐴, 𝐵} (𝑥𝑤𝑦) = ((𝑥𝐴𝑦) ∩ (𝑥𝐵𝑦)))
2723, 23, 26mpoeq123dv 7416 . . 3 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑥 𝑤 ∈ {𝐴, 𝐵}dom dom 𝑤, 𝑦 𝑤 ∈ {𝐴, 𝐵}dom dom 𝑤 𝑤 ∈ {𝐴, 𝐵} (𝑥𝑤𝑦)) = (𝑥 ∈ (dom dom 𝐴 ∩ dom dom 𝐵), 𝑦 ∈ (dom dom 𝐴 ∩ dom dom 𝐵) ↦ ((𝑥𝐴𝑦) ∩ (𝑥𝐵𝑦))))
2818, 27eqtrd 2766 . 2 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑧 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑧) ∩ (𝐵𝑧))) = (𝑥 ∈ (dom dom 𝐴 ∩ dom dom 𝐵), 𝑦 ∈ (dom dom 𝐴 ∩ dom dom 𝐵) ↦ ((𝑥𝐴𝑦) ∩ (𝑥𝐵𝑦))))
29 infsubc 49092 . 2 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑧 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑧) ∩ (𝐵𝑧))) ∈ (Subcat‘𝐶))
3028, 29eqeltrrd 2832 1 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑥 ∈ (dom dom 𝐴 ∩ dom dom 𝐵), 𝑦 ∈ (dom dom 𝐴 ∩ dom dom 𝐵) ↦ ((𝑥𝐴𝑦) ∩ (𝑥𝐵𝑦))) ∈ (Subcat‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  cin 3896  c0 4278  {cpr 4573   ciin 4937   class class class wbr 5086  cmpt 5167  dom cdm 5611  cfv 6476  (class class class)co 7341  cmpo 7343  Homf chomf 17567  cat cssc 17709  Subcatcsubc 17711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-pm 8748  df-ixp 8817  df-ssc 17712  df-subc 17714
This theorem is referenced by:  infsubc2d  49094
  Copyright terms: Public domain W3C validator