Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infsubc2 Structured version   Visualization version   GIF version

Theorem infsubc2 49023
Description: The intersection of two subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025.)
Assertion
Ref Expression
infsubc2 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑥 ∈ (dom dom 𝐴 ∩ dom dom 𝐵), 𝑦 ∈ (dom dom 𝐴 ∩ dom dom 𝐵) ↦ ((𝑥𝐴𝑦) ∩ (𝑥𝐵𝑦))) ∈ (Subcat‘𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem infsubc2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prnzg 4738 . . . . 5 (𝐴 ∈ (Subcat‘𝐶) → {𝐴, 𝐵} ≠ ∅)
21adantr 480 . . . 4 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → {𝐴, 𝐵} ≠ ∅)
3 simpll 766 . . . . . . 7 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → 𝐴 ∈ (Subcat‘𝐶))
4 eqid 2729 . . . . . . 7 (Homf𝐶) = (Homf𝐶)
53, 4subcssc 17778 . . . . . 6 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → 𝐴cat (Homf𝐶))
6 breq1 5105 . . . . . 6 (𝑤 = 𝐴 → (𝑤cat (Homf𝐶) ↔ 𝐴cat (Homf𝐶)))
75, 6syl5ibrcom 247 . . . . 5 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → (𝑤 = 𝐴𝑤cat (Homf𝐶)))
8 simplr 768 . . . . . . 7 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → 𝐵 ∈ (Subcat‘𝐶))
98, 4subcssc 17778 . . . . . 6 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → 𝐵cat (Homf𝐶))
10 breq1 5105 . . . . . 6 (𝑤 = 𝐵 → (𝑤cat (Homf𝐶) ↔ 𝐵cat (Homf𝐶)))
119, 10syl5ibrcom 247 . . . . 5 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → (𝑤 = 𝐵𝑤cat (Homf𝐶)))
12 elpri 4609 . . . . . 6 (𝑤 ∈ {𝐴, 𝐵} → (𝑤 = 𝐴𝑤 = 𝐵))
1312adantl 481 . . . . 5 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → (𝑤 = 𝐴𝑤 = 𝐵))
147, 11, 13mpjaod 860 . . . 4 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → 𝑤cat (Homf𝐶))
15 iinfprg 49021 . . . 4 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑧 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑧) ∩ (𝐵𝑧))) = (𝑧 𝑤 ∈ {𝐴, 𝐵}dom 𝑤 𝑤 ∈ {𝐴, 𝐵} (𝑤𝑧)))
16 eqidd 2730 . . . 4 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → dom dom 𝑤 = dom dom 𝑤)
17 nfv 1914 . . . 4 𝑤(𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶))
182, 14, 15, 16, 17iinfssclem1 49016 . . 3 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑧 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑧) ∩ (𝐵𝑧))) = (𝑥 𝑤 ∈ {𝐴, 𝐵}dom dom 𝑤, 𝑦 𝑤 ∈ {𝐴, 𝐵}dom dom 𝑤 𝑤 ∈ {𝐴, 𝐵} (𝑥𝑤𝑦)))
19 dmeq 5857 . . . . . 6 (𝑤 = 𝐴 → dom 𝑤 = dom 𝐴)
2019dmeqd 5859 . . . . 5 (𝑤 = 𝐴 → dom dom 𝑤 = dom dom 𝐴)
21 dmeq 5857 . . . . . 6 (𝑤 = 𝐵 → dom 𝑤 = dom 𝐵)
2221dmeqd 5859 . . . . 5 (𝑤 = 𝐵 → dom dom 𝑤 = dom dom 𝐵)
2320, 22iinxprg 5048 . . . 4 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → 𝑤 ∈ {𝐴, 𝐵}dom dom 𝑤 = (dom dom 𝐴 ∩ dom dom 𝐵))
24 oveq 7375 . . . . 5 (𝑤 = 𝐴 → (𝑥𝑤𝑦) = (𝑥𝐴𝑦))
25 oveq 7375 . . . . 5 (𝑤 = 𝐵 → (𝑥𝑤𝑦) = (𝑥𝐵𝑦))
2624, 25iinxprg 5048 . . . 4 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → 𝑤 ∈ {𝐴, 𝐵} (𝑥𝑤𝑦) = ((𝑥𝐴𝑦) ∩ (𝑥𝐵𝑦)))
2723, 23, 26mpoeq123dv 7444 . . 3 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑥 𝑤 ∈ {𝐴, 𝐵}dom dom 𝑤, 𝑦 𝑤 ∈ {𝐴, 𝐵}dom dom 𝑤 𝑤 ∈ {𝐴, 𝐵} (𝑥𝑤𝑦)) = (𝑥 ∈ (dom dom 𝐴 ∩ dom dom 𝐵), 𝑦 ∈ (dom dom 𝐴 ∩ dom dom 𝐵) ↦ ((𝑥𝐴𝑦) ∩ (𝑥𝐵𝑦))))
2818, 27eqtrd 2764 . 2 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑧 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑧) ∩ (𝐵𝑧))) = (𝑥 ∈ (dom dom 𝐴 ∩ dom dom 𝐵), 𝑦 ∈ (dom dom 𝐴 ∩ dom dom 𝐵) ↦ ((𝑥𝐴𝑦) ∩ (𝑥𝐵𝑦))))
29 infsubc 49022 . 2 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑧 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑧) ∩ (𝐵𝑧))) ∈ (Subcat‘𝐶))
3028, 29eqeltrrd 2829 1 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑥 ∈ (dom dom 𝐴 ∩ dom dom 𝐵), 𝑦 ∈ (dom dom 𝐴 ∩ dom dom 𝐵) ↦ ((𝑥𝐴𝑦) ∩ (𝑥𝐵𝑦))) ∈ (Subcat‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  cin 3910  c0 4292  {cpr 4587   ciin 4952   class class class wbr 5102  cmpt 5183  dom cdm 5631  cfv 6499  (class class class)co 7369  cmpo 7371  Homf chomf 17603  cat cssc 17745  Subcatcsubc 17747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-pm 8779  df-ixp 8848  df-ssc 17748  df-subc 17750
This theorem is referenced by:  infsubc2d  49024
  Copyright terms: Public domain W3C validator