Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infsubc2 Structured version   Visualization version   GIF version

Theorem infsubc2 49038
Description: The intersection of two subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025.)
Assertion
Ref Expression
infsubc2 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑥 ∈ (dom dom 𝐴 ∩ dom dom 𝐵), 𝑦 ∈ (dom dom 𝐴 ∩ dom dom 𝐵) ↦ ((𝑥𝐴𝑦) ∩ (𝑥𝐵𝑦))) ∈ (Subcat‘𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem infsubc2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prnzg 4744 . . . . 5 (𝐴 ∈ (Subcat‘𝐶) → {𝐴, 𝐵} ≠ ∅)
21adantr 480 . . . 4 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → {𝐴, 𝐵} ≠ ∅)
3 simpll 766 . . . . . . 7 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → 𝐴 ∈ (Subcat‘𝐶))
4 eqid 2730 . . . . . . 7 (Homf𝐶) = (Homf𝐶)
53, 4subcssc 17808 . . . . . 6 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → 𝐴cat (Homf𝐶))
6 breq1 5112 . . . . . 6 (𝑤 = 𝐴 → (𝑤cat (Homf𝐶) ↔ 𝐴cat (Homf𝐶)))
75, 6syl5ibrcom 247 . . . . 5 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → (𝑤 = 𝐴𝑤cat (Homf𝐶)))
8 simplr 768 . . . . . . 7 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → 𝐵 ∈ (Subcat‘𝐶))
98, 4subcssc 17808 . . . . . 6 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → 𝐵cat (Homf𝐶))
10 breq1 5112 . . . . . 6 (𝑤 = 𝐵 → (𝑤cat (Homf𝐶) ↔ 𝐵cat (Homf𝐶)))
119, 10syl5ibrcom 247 . . . . 5 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → (𝑤 = 𝐵𝑤cat (Homf𝐶)))
12 elpri 4615 . . . . . 6 (𝑤 ∈ {𝐴, 𝐵} → (𝑤 = 𝐴𝑤 = 𝐵))
1312adantl 481 . . . . 5 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → (𝑤 = 𝐴𝑤 = 𝐵))
147, 11, 13mpjaod 860 . . . 4 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → 𝑤cat (Homf𝐶))
15 iinfprg 49036 . . . 4 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑧 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑧) ∩ (𝐵𝑧))) = (𝑧 𝑤 ∈ {𝐴, 𝐵}dom 𝑤 𝑤 ∈ {𝐴, 𝐵} (𝑤𝑧)))
16 eqidd 2731 . . . 4 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → dom dom 𝑤 = dom dom 𝑤)
17 nfv 1914 . . . 4 𝑤(𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶))
182, 14, 15, 16, 17iinfssclem1 49031 . . 3 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑧 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑧) ∩ (𝐵𝑧))) = (𝑥 𝑤 ∈ {𝐴, 𝐵}dom dom 𝑤, 𝑦 𝑤 ∈ {𝐴, 𝐵}dom dom 𝑤 𝑤 ∈ {𝐴, 𝐵} (𝑥𝑤𝑦)))
19 dmeq 5869 . . . . . 6 (𝑤 = 𝐴 → dom 𝑤 = dom 𝐴)
2019dmeqd 5871 . . . . 5 (𝑤 = 𝐴 → dom dom 𝑤 = dom dom 𝐴)
21 dmeq 5869 . . . . . 6 (𝑤 = 𝐵 → dom 𝑤 = dom 𝐵)
2221dmeqd 5871 . . . . 5 (𝑤 = 𝐵 → dom dom 𝑤 = dom dom 𝐵)
2320, 22iinxprg 5055 . . . 4 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → 𝑤 ∈ {𝐴, 𝐵}dom dom 𝑤 = (dom dom 𝐴 ∩ dom dom 𝐵))
24 oveq 7395 . . . . 5 (𝑤 = 𝐴 → (𝑥𝑤𝑦) = (𝑥𝐴𝑦))
25 oveq 7395 . . . . 5 (𝑤 = 𝐵 → (𝑥𝑤𝑦) = (𝑥𝐵𝑦))
2624, 25iinxprg 5055 . . . 4 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → 𝑤 ∈ {𝐴, 𝐵} (𝑥𝑤𝑦) = ((𝑥𝐴𝑦) ∩ (𝑥𝐵𝑦)))
2723, 23, 26mpoeq123dv 7466 . . 3 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑥 𝑤 ∈ {𝐴, 𝐵}dom dom 𝑤, 𝑦 𝑤 ∈ {𝐴, 𝐵}dom dom 𝑤 𝑤 ∈ {𝐴, 𝐵} (𝑥𝑤𝑦)) = (𝑥 ∈ (dom dom 𝐴 ∩ dom dom 𝐵), 𝑦 ∈ (dom dom 𝐴 ∩ dom dom 𝐵) ↦ ((𝑥𝐴𝑦) ∩ (𝑥𝐵𝑦))))
2818, 27eqtrd 2765 . 2 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑧 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑧) ∩ (𝐵𝑧))) = (𝑥 ∈ (dom dom 𝐴 ∩ dom dom 𝐵), 𝑦 ∈ (dom dom 𝐴 ∩ dom dom 𝐵) ↦ ((𝑥𝐴𝑦) ∩ (𝑥𝐵𝑦))))
29 infsubc 49037 . 2 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑧 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑧) ∩ (𝐵𝑧))) ∈ (Subcat‘𝐶))
3028, 29eqeltrrd 2830 1 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑥 ∈ (dom dom 𝐴 ∩ dom dom 𝐵), 𝑦 ∈ (dom dom 𝐴 ∩ dom dom 𝐵) ↦ ((𝑥𝐴𝑦) ∩ (𝑥𝐵𝑦))) ∈ (Subcat‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  cin 3915  c0 4298  {cpr 4593   ciin 4958   class class class wbr 5109  cmpt 5190  dom cdm 5640  cfv 6513  (class class class)co 7389  cmpo 7391  Homf chomf 17633  cat cssc 17775  Subcatcsubc 17777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-pm 8804  df-ixp 8873  df-ssc 17778  df-subc 17780
This theorem is referenced by:  infsubc2d  49039
  Copyright terms: Public domain W3C validator