Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infsubc2 Structured version   Visualization version   GIF version

Theorem infsubc2 49046
Description: The intersection of two subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025.)
Assertion
Ref Expression
infsubc2 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑥 ∈ (dom dom 𝐴 ∩ dom dom 𝐵), 𝑦 ∈ (dom dom 𝐴 ∩ dom dom 𝐵) ↦ ((𝑥𝐴𝑦) ∩ (𝑥𝐵𝑦))) ∈ (Subcat‘𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem infsubc2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prnzg 4730 . . . . 5 (𝐴 ∈ (Subcat‘𝐶) → {𝐴, 𝐵} ≠ ∅)
21adantr 480 . . . 4 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → {𝐴, 𝐵} ≠ ∅)
3 simpll 766 . . . . . . 7 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → 𝐴 ∈ (Subcat‘𝐶))
4 eqid 2729 . . . . . . 7 (Homf𝐶) = (Homf𝐶)
53, 4subcssc 17747 . . . . . 6 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → 𝐴cat (Homf𝐶))
6 breq1 5095 . . . . . 6 (𝑤 = 𝐴 → (𝑤cat (Homf𝐶) ↔ 𝐴cat (Homf𝐶)))
75, 6syl5ibrcom 247 . . . . 5 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → (𝑤 = 𝐴𝑤cat (Homf𝐶)))
8 simplr 768 . . . . . . 7 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → 𝐵 ∈ (Subcat‘𝐶))
98, 4subcssc 17747 . . . . . 6 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → 𝐵cat (Homf𝐶))
10 breq1 5095 . . . . . 6 (𝑤 = 𝐵 → (𝑤cat (Homf𝐶) ↔ 𝐵cat (Homf𝐶)))
119, 10syl5ibrcom 247 . . . . 5 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → (𝑤 = 𝐵𝑤cat (Homf𝐶)))
12 elpri 4601 . . . . . 6 (𝑤 ∈ {𝐴, 𝐵} → (𝑤 = 𝐴𝑤 = 𝐵))
1312adantl 481 . . . . 5 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → (𝑤 = 𝐴𝑤 = 𝐵))
147, 11, 13mpjaod 860 . . . 4 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → 𝑤cat (Homf𝐶))
15 iinfprg 49044 . . . 4 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑧 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑧) ∩ (𝐵𝑧))) = (𝑧 𝑤 ∈ {𝐴, 𝐵}dom 𝑤 𝑤 ∈ {𝐴, 𝐵} (𝑤𝑧)))
16 eqidd 2730 . . . 4 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → dom dom 𝑤 = dom dom 𝑤)
17 nfv 1914 . . . 4 𝑤(𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶))
182, 14, 15, 16, 17iinfssclem1 49039 . . 3 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑧 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑧) ∩ (𝐵𝑧))) = (𝑥 𝑤 ∈ {𝐴, 𝐵}dom dom 𝑤, 𝑦 𝑤 ∈ {𝐴, 𝐵}dom dom 𝑤 𝑤 ∈ {𝐴, 𝐵} (𝑥𝑤𝑦)))
19 dmeq 5846 . . . . . 6 (𝑤 = 𝐴 → dom 𝑤 = dom 𝐴)
2019dmeqd 5848 . . . . 5 (𝑤 = 𝐴 → dom dom 𝑤 = dom dom 𝐴)
21 dmeq 5846 . . . . . 6 (𝑤 = 𝐵 → dom 𝑤 = dom 𝐵)
2221dmeqd 5848 . . . . 5 (𝑤 = 𝐵 → dom dom 𝑤 = dom dom 𝐵)
2320, 22iinxprg 5038 . . . 4 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → 𝑤 ∈ {𝐴, 𝐵}dom dom 𝑤 = (dom dom 𝐴 ∩ dom dom 𝐵))
24 oveq 7355 . . . . 5 (𝑤 = 𝐴 → (𝑥𝑤𝑦) = (𝑥𝐴𝑦))
25 oveq 7355 . . . . 5 (𝑤 = 𝐵 → (𝑥𝑤𝑦) = (𝑥𝐵𝑦))
2624, 25iinxprg 5038 . . . 4 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → 𝑤 ∈ {𝐴, 𝐵} (𝑥𝑤𝑦) = ((𝑥𝐴𝑦) ∩ (𝑥𝐵𝑦)))
2723, 23, 26mpoeq123dv 7424 . . 3 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑥 𝑤 ∈ {𝐴, 𝐵}dom dom 𝑤, 𝑦 𝑤 ∈ {𝐴, 𝐵}dom dom 𝑤 𝑤 ∈ {𝐴, 𝐵} (𝑥𝑤𝑦)) = (𝑥 ∈ (dom dom 𝐴 ∩ dom dom 𝐵), 𝑦 ∈ (dom dom 𝐴 ∩ dom dom 𝐵) ↦ ((𝑥𝐴𝑦) ∩ (𝑥𝐵𝑦))))
2818, 27eqtrd 2764 . 2 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑧 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑧) ∩ (𝐵𝑧))) = (𝑥 ∈ (dom dom 𝐴 ∩ dom dom 𝐵), 𝑦 ∈ (dom dom 𝐴 ∩ dom dom 𝐵) ↦ ((𝑥𝐴𝑦) ∩ (𝑥𝐵𝑦))))
29 infsubc 49045 . 2 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑧 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑧) ∩ (𝐵𝑧))) ∈ (Subcat‘𝐶))
3028, 29eqeltrrd 2829 1 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑥 ∈ (dom dom 𝐴 ∩ dom dom 𝐵), 𝑦 ∈ (dom dom 𝐴 ∩ dom dom 𝐵) ↦ ((𝑥𝐴𝑦) ∩ (𝑥𝐵𝑦))) ∈ (Subcat‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  cin 3902  c0 4284  {cpr 4579   ciin 4942   class class class wbr 5092  cmpt 5173  dom cdm 5619  cfv 6482  (class class class)co 7349  cmpo 7351  Homf chomf 17572  cat cssc 17714  Subcatcsubc 17716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-pm 8756  df-ixp 8825  df-ssc 17717  df-subc 17719
This theorem is referenced by:  infsubc2d  49047
  Copyright terms: Public domain W3C validator