Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infsubc2 Structured version   Visualization version   GIF version

Theorem infsubc2 48906
Description: The intersection of two subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025.)
Assertion
Ref Expression
infsubc2 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑥 ∈ (dom dom 𝐴 ∩ dom dom 𝐵), 𝑦 ∈ (dom dom 𝐴 ∩ dom dom 𝐵) ↦ ((𝑥𝐴𝑦) ∩ (𝑥𝐵𝑦))) ∈ (Subcat‘𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem infsubc2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prnzg 4751 . . . . 5 (𝐴 ∈ (Subcat‘𝐶) → {𝐴, 𝐵} ≠ ∅)
21adantr 480 . . . 4 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → {𝐴, 𝐵} ≠ ∅)
3 simpll 766 . . . . . . 7 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → 𝐴 ∈ (Subcat‘𝐶))
4 eqid 2734 . . . . . . 7 (Homf𝐶) = (Homf𝐶)
53, 4subcssc 17838 . . . . . 6 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → 𝐴cat (Homf𝐶))
6 breq1 5119 . . . . . 6 (𝑤 = 𝐴 → (𝑤cat (Homf𝐶) ↔ 𝐴cat (Homf𝐶)))
75, 6syl5ibrcom 247 . . . . 5 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → (𝑤 = 𝐴𝑤cat (Homf𝐶)))
8 simplr 768 . . . . . . 7 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → 𝐵 ∈ (Subcat‘𝐶))
98, 4subcssc 17838 . . . . . 6 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → 𝐵cat (Homf𝐶))
10 breq1 5119 . . . . . 6 (𝑤 = 𝐵 → (𝑤cat (Homf𝐶) ↔ 𝐵cat (Homf𝐶)))
119, 10syl5ibrcom 247 . . . . 5 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → (𝑤 = 𝐵𝑤cat (Homf𝐶)))
12 elpri 4622 . . . . . 6 (𝑤 ∈ {𝐴, 𝐵} → (𝑤 = 𝐴𝑤 = 𝐵))
1312adantl 481 . . . . 5 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → (𝑤 = 𝐴𝑤 = 𝐵))
147, 11, 13mpjaod 860 . . . 4 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → 𝑤cat (Homf𝐶))
15 iinfprg 48904 . . . 4 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑧 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑧) ∩ (𝐵𝑧))) = (𝑧 𝑤 ∈ {𝐴, 𝐵}dom 𝑤 𝑤 ∈ {𝐴, 𝐵} (𝑤𝑧)))
16 eqidd 2735 . . . 4 (((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) ∧ 𝑤 ∈ {𝐴, 𝐵}) → dom dom 𝑤 = dom dom 𝑤)
17 nfv 1913 . . . 4 𝑤(𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶))
182, 14, 15, 16, 17iinfssclem1 48899 . . 3 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑧 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑧) ∩ (𝐵𝑧))) = (𝑥 𝑤 ∈ {𝐴, 𝐵}dom dom 𝑤, 𝑦 𝑤 ∈ {𝐴, 𝐵}dom dom 𝑤 𝑤 ∈ {𝐴, 𝐵} (𝑥𝑤𝑦)))
19 dmeq 5880 . . . . . 6 (𝑤 = 𝐴 → dom 𝑤 = dom 𝐴)
2019dmeqd 5882 . . . . 5 (𝑤 = 𝐴 → dom dom 𝑤 = dom dom 𝐴)
21 dmeq 5880 . . . . . 6 (𝑤 = 𝐵 → dom 𝑤 = dom 𝐵)
2221dmeqd 5882 . . . . 5 (𝑤 = 𝐵 → dom dom 𝑤 = dom dom 𝐵)
2320, 22iinxprg 5062 . . . 4 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → 𝑤 ∈ {𝐴, 𝐵}dom dom 𝑤 = (dom dom 𝐴 ∩ dom dom 𝐵))
24 oveq 7405 . . . . 5 (𝑤 = 𝐴 → (𝑥𝑤𝑦) = (𝑥𝐴𝑦))
25 oveq 7405 . . . . 5 (𝑤 = 𝐵 → (𝑥𝑤𝑦) = (𝑥𝐵𝑦))
2624, 25iinxprg 5062 . . . 4 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → 𝑤 ∈ {𝐴, 𝐵} (𝑥𝑤𝑦) = ((𝑥𝐴𝑦) ∩ (𝑥𝐵𝑦)))
2723, 23, 26mpoeq123dv 7476 . . 3 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑥 𝑤 ∈ {𝐴, 𝐵}dom dom 𝑤, 𝑦 𝑤 ∈ {𝐴, 𝐵}dom dom 𝑤 𝑤 ∈ {𝐴, 𝐵} (𝑥𝑤𝑦)) = (𝑥 ∈ (dom dom 𝐴 ∩ dom dom 𝐵), 𝑦 ∈ (dom dom 𝐴 ∩ dom dom 𝐵) ↦ ((𝑥𝐴𝑦) ∩ (𝑥𝐵𝑦))))
2818, 27eqtrd 2769 . 2 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑧 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑧) ∩ (𝐵𝑧))) = (𝑥 ∈ (dom dom 𝐴 ∩ dom dom 𝐵), 𝑦 ∈ (dom dom 𝐴 ∩ dom dom 𝐵) ↦ ((𝑥𝐴𝑦) ∩ (𝑥𝐵𝑦))))
29 infsubc 48905 . 2 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑧 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴𝑧) ∩ (𝐵𝑧))) ∈ (Subcat‘𝐶))
3028, 29eqeltrrd 2834 1 ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑥 ∈ (dom dom 𝐴 ∩ dom dom 𝐵), 𝑦 ∈ (dom dom 𝐴 ∩ dom dom 𝐵) ↦ ((𝑥𝐴𝑦) ∩ (𝑥𝐵𝑦))) ∈ (Subcat‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1539  wcel 2107  wne 2931  cin 3923  c0 4306  {cpr 4601   ciin 4965   class class class wbr 5116  cmpt 5198  dom cdm 5651  cfv 6527  (class class class)co 7399  cmpo 7401  Homf chomf 17663  cat cssc 17805  Subcatcsubc 17807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-iin 4967  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-ov 7402  df-oprab 7403  df-mpo 7404  df-1st 7982  df-2nd 7983  df-pm 8837  df-ixp 8906  df-ssc 17808  df-subc 17810
This theorem is referenced by:  infsubc2d  48907
  Copyright terms: Public domain W3C validator