MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaundi Structured version   Visualization version   GIF version

Theorem imaundi 6148
Description: Distributive law for image over union. Theorem 35 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
imaundi (𝐴 “ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))

Proof of Theorem imaundi
StepHypRef Expression
1 resundi 5993 . . . 4 (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
21rneqi 5933 . . 3 ran (𝐴 ↾ (𝐵𝐶)) = ran ((𝐴𝐵) ∪ (𝐴𝐶))
3 rnun 6144 . . 3 ran ((𝐴𝐵) ∪ (𝐴𝐶)) = (ran (𝐴𝐵) ∪ ran (𝐴𝐶))
42, 3eqtri 2755 . 2 ran (𝐴 ↾ (𝐵𝐶)) = (ran (𝐴𝐵) ∪ ran (𝐴𝐶))
5 df-ima 5685 . 2 (𝐴 “ (𝐵𝐶)) = ran (𝐴 ↾ (𝐵𝐶))
6 df-ima 5685 . . 3 (𝐴𝐵) = ran (𝐴𝐵)
7 df-ima 5685 . . 3 (𝐴𝐶) = ran (𝐴𝐶)
86, 7uneq12i 4157 . 2 ((𝐴𝐵) ∪ (𝐴𝐶)) = (ran (𝐴𝐵) ∪ ran (𝐴𝐶))
94, 5, 83eqtr4i 2765 1 (𝐴 “ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  cun 3942  ran crn 5673  cres 5674  cima 5675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-12 2164  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-xp 5678  df-cnv 5680  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685
This theorem is referenced by:  cnvimassrndm  6150  fnimapr  6976  naddasslem1  8708  naddasslem2  8709  imafi  9191  domunfican  9336  fiint  9340  fodomfi  9341  marypha1lem  9448  resunimafz0  14428  dprd2da  19990  dmdprdsplit2lem  19993  uniioombllem3  25501  mbfimaicc  25547  plyeq0  26132  madeoldsuc  27798  negsbdaylem  27955  fnimatp  32446  ffsrn  32495  tocyccntz  32843  imadifss  37003  poimirlem1  37029  poimirlem2  37030  poimirlem3  37031  poimirlem4  37032  poimirlem6  37034  poimirlem7  37035  poimirlem11  37039  poimirlem12  37040  poimirlem15  37043  poimirlem16  37044  poimirlem17  37045  poimirlem19  37047  poimirlem20  37048  poimirlem23  37051  poimirlem24  37052  poimirlem25  37053  poimirlem29  37057  poimirlem31  37059  mbfposadd  37075  itg2addnclem2  37080  ftc1anclem1  37101  ftc1anclem5  37105  brtrclfv2  43080  frege77d  43099  frege109d  43110  frege131d  43117  dffrege76  43292  icccncfext  45198
  Copyright terms: Public domain W3C validator