| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaundi | Structured version Visualization version GIF version | ||
| Description: Distributive law for image over union. Theorem 35 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.) |
| Ref | Expression |
|---|---|
| imaundi | ⊢ (𝐴 “ (𝐵 ∪ 𝐶)) = ((𝐴 “ 𝐵) ∪ (𝐴 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resundi 5985 | . . . 4 ⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) | |
| 2 | 1 | rneqi 5922 | . . 3 ⊢ ran (𝐴 ↾ (𝐵 ∪ 𝐶)) = ran ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) |
| 3 | rnun 6139 | . . 3 ⊢ ran ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) = (ran (𝐴 ↾ 𝐵) ∪ ran (𝐴 ↾ 𝐶)) | |
| 4 | 2, 3 | eqtri 2759 | . 2 ⊢ ran (𝐴 ↾ (𝐵 ∪ 𝐶)) = (ran (𝐴 ↾ 𝐵) ∪ ran (𝐴 ↾ 𝐶)) |
| 5 | df-ima 5672 | . 2 ⊢ (𝐴 “ (𝐵 ∪ 𝐶)) = ran (𝐴 ↾ (𝐵 ∪ 𝐶)) | |
| 6 | df-ima 5672 | . . 3 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
| 7 | df-ima 5672 | . . 3 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
| 8 | 6, 7 | uneq12i 4146 | . 2 ⊢ ((𝐴 “ 𝐵) ∪ (𝐴 “ 𝐶)) = (ran (𝐴 ↾ 𝐵) ∪ ran (𝐴 ↾ 𝐶)) |
| 9 | 4, 5, 8 | 3eqtr4i 2769 | 1 ⊢ (𝐴 “ (𝐵 ∪ 𝐶)) = ((𝐴 “ 𝐵) ∪ (𝐴 “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3929 ran crn 5660 ↾ cres 5661 “ cima 5662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 |
| This theorem is referenced by: cnvimassrndm 6146 fnimapr 6967 fnimatpd 6968 naddasslem1 8711 naddasslem2 8712 fodomfi 9327 imafiOLD 9331 domunfican 9338 fiint 9343 fiintOLD 9344 fodomfiOLD 9347 marypha1lem 9450 resunimafz0 14468 dprd2da 20030 dmdprdsplit2lem 20033 uniioombllem3 25543 mbfimaicc 25589 plyeq0 26173 madeoldsuc 27853 addsbday 27981 negsbdaylem 28019 zs12bday 28400 ffsrn 32711 tocyccntz 33160 imadifss 37624 poimirlem1 37650 poimirlem2 37651 poimirlem3 37652 poimirlem4 37653 poimirlem6 37655 poimirlem7 37656 poimirlem11 37660 poimirlem12 37661 poimirlem15 37664 poimirlem16 37665 poimirlem17 37666 poimirlem19 37668 poimirlem20 37669 poimirlem23 37672 poimirlem24 37673 poimirlem25 37674 poimirlem29 37678 poimirlem31 37680 mbfposadd 37696 itg2addnclem2 37701 ftc1anclem1 37722 ftc1anclem5 37726 brtrclfv2 43718 frege77d 43737 frege109d 43748 frege131d 43755 dffrege76 43930 icccncfext 45883 cycl3grtri 47926 |
| Copyright terms: Public domain | W3C validator |