![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imaundi | Structured version Visualization version GIF version |
Description: Distributive law for image over union. Theorem 35 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.) |
Ref | Expression |
---|---|
imaundi | ⊢ (𝐴 “ (𝐵 ∪ 𝐶)) = ((𝐴 “ 𝐵) ∪ (𝐴 “ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resundi 6014 | . . . 4 ⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) | |
2 | 1 | rneqi 5951 | . . 3 ⊢ ran (𝐴 ↾ (𝐵 ∪ 𝐶)) = ran ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) |
3 | rnun 6168 | . . 3 ⊢ ran ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) = (ran (𝐴 ↾ 𝐵) ∪ ran (𝐴 ↾ 𝐶)) | |
4 | 2, 3 | eqtri 2763 | . 2 ⊢ ran (𝐴 ↾ (𝐵 ∪ 𝐶)) = (ran (𝐴 ↾ 𝐵) ∪ ran (𝐴 ↾ 𝐶)) |
5 | df-ima 5702 | . 2 ⊢ (𝐴 “ (𝐵 ∪ 𝐶)) = ran (𝐴 ↾ (𝐵 ∪ 𝐶)) | |
6 | df-ima 5702 | . . 3 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
7 | df-ima 5702 | . . 3 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
8 | 6, 7 | uneq12i 4176 | . 2 ⊢ ((𝐴 “ 𝐵) ∪ (𝐴 “ 𝐶)) = (ran (𝐴 ↾ 𝐵) ∪ ran (𝐴 ↾ 𝐶)) |
9 | 4, 5, 8 | 3eqtr4i 2773 | 1 ⊢ (𝐴 “ (𝐵 ∪ 𝐶)) = ((𝐴 “ 𝐵) ∪ (𝐴 “ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cun 3961 ran crn 5690 ↾ cres 5691 “ cima 5692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 |
This theorem is referenced by: cnvimassrndm 6174 fnimapr 6992 fnimatpd 6993 naddasslem1 8731 naddasslem2 8732 fodomfi 9348 imafiOLD 9352 domunfican 9359 fiint 9364 fiintOLD 9365 fodomfiOLD 9368 marypha1lem 9471 resunimafz0 14481 dprd2da 20077 dmdprdsplit2lem 20080 uniioombllem3 25634 mbfimaicc 25680 plyeq0 26265 madeoldsuc 27938 addsbday 28065 negsbdaylem 28103 pw2bday 28433 zs12bday 28439 ffsrn 32747 tocyccntz 33147 imadifss 37582 poimirlem1 37608 poimirlem2 37609 poimirlem3 37610 poimirlem4 37611 poimirlem6 37613 poimirlem7 37614 poimirlem11 37618 poimirlem12 37619 poimirlem15 37622 poimirlem16 37623 poimirlem17 37624 poimirlem19 37626 poimirlem20 37627 poimirlem23 37630 poimirlem24 37631 poimirlem25 37632 poimirlem29 37636 poimirlem31 37638 mbfposadd 37654 itg2addnclem2 37659 ftc1anclem1 37680 ftc1anclem5 37684 brtrclfv2 43717 frege77d 43736 frege109d 43747 frege131d 43754 dffrege76 43929 icccncfext 45843 |
Copyright terms: Public domain | W3C validator |