Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imaundi | Structured version Visualization version GIF version |
Description: Distributive law for image over union. Theorem 35 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.) |
Ref | Expression |
---|---|
imaundi | ⊢ (𝐴 “ (𝐵 ∪ 𝐶)) = ((𝐴 “ 𝐵) ∪ (𝐴 “ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resundi 5905 | . . . 4 ⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) | |
2 | 1 | rneqi 5846 | . . 3 ⊢ ran (𝐴 ↾ (𝐵 ∪ 𝐶)) = ran ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) |
3 | rnun 6049 | . . 3 ⊢ ran ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) = (ran (𝐴 ↾ 𝐵) ∪ ran (𝐴 ↾ 𝐶)) | |
4 | 2, 3 | eqtri 2766 | . 2 ⊢ ran (𝐴 ↾ (𝐵 ∪ 𝐶)) = (ran (𝐴 ↾ 𝐵) ∪ ran (𝐴 ↾ 𝐶)) |
5 | df-ima 5602 | . 2 ⊢ (𝐴 “ (𝐵 ∪ 𝐶)) = ran (𝐴 ↾ (𝐵 ∪ 𝐶)) | |
6 | df-ima 5602 | . . 3 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
7 | df-ima 5602 | . . 3 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
8 | 6, 7 | uneq12i 4095 | . 2 ⊢ ((𝐴 “ 𝐵) ∪ (𝐴 “ 𝐶)) = (ran (𝐴 ↾ 𝐵) ∪ ran (𝐴 ↾ 𝐶)) |
9 | 4, 5, 8 | 3eqtr4i 2776 | 1 ⊢ (𝐴 “ (𝐵 ∪ 𝐶)) = ((𝐴 “ 𝐵) ∪ (𝐴 “ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3885 ran crn 5590 ↾ cres 5591 “ cima 5592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 |
This theorem is referenced by: cnvimassrndm 6055 fnimapr 6852 imafi 8958 domunfican 9087 fiint 9091 fodomfi 9092 marypha1lem 9192 resunimafz0 14157 dprd2da 19645 dmdprdsplit2lem 19648 uniioombllem3 24749 mbfimaicc 24795 plyeq0 25372 fnimatp 31014 ffsrn 31064 tocyccntz 31411 madeoldsuc 34067 imadifss 35752 poimirlem1 35778 poimirlem2 35779 poimirlem3 35780 poimirlem4 35781 poimirlem6 35783 poimirlem7 35784 poimirlem11 35788 poimirlem12 35789 poimirlem15 35792 poimirlem16 35793 poimirlem17 35794 poimirlem19 35796 poimirlem20 35797 poimirlem23 35800 poimirlem24 35801 poimirlem25 35802 poimirlem29 35806 poimirlem31 35808 mbfposadd 35824 itg2addnclem2 35829 ftc1anclem1 35850 ftc1anclem5 35854 brtrclfv2 41335 frege77d 41354 frege109d 41365 frege131d 41372 dffrege76 41547 icccncfext 43428 |
Copyright terms: Public domain | W3C validator |