![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imaundi | Structured version Visualization version GIF version |
Description: Distributive law for image over union. Theorem 35 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.) |
Ref | Expression |
---|---|
imaundi | ⊢ (𝐴 “ (𝐵 ∪ 𝐶)) = ((𝐴 “ 𝐵) ∪ (𝐴 “ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resundi 6023 | . . . 4 ⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) | |
2 | 1 | rneqi 5962 | . . 3 ⊢ ran (𝐴 ↾ (𝐵 ∪ 𝐶)) = ran ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) |
3 | rnun 6177 | . . 3 ⊢ ran ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) = (ran (𝐴 ↾ 𝐵) ∪ ran (𝐴 ↾ 𝐶)) | |
4 | 2, 3 | eqtri 2768 | . 2 ⊢ ran (𝐴 ↾ (𝐵 ∪ 𝐶)) = (ran (𝐴 ↾ 𝐵) ∪ ran (𝐴 ↾ 𝐶)) |
5 | df-ima 5713 | . 2 ⊢ (𝐴 “ (𝐵 ∪ 𝐶)) = ran (𝐴 ↾ (𝐵 ∪ 𝐶)) | |
6 | df-ima 5713 | . . 3 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
7 | df-ima 5713 | . . 3 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
8 | 6, 7 | uneq12i 4189 | . 2 ⊢ ((𝐴 “ 𝐵) ∪ (𝐴 “ 𝐶)) = (ran (𝐴 ↾ 𝐵) ∪ ran (𝐴 ↾ 𝐶)) |
9 | 4, 5, 8 | 3eqtr4i 2778 | 1 ⊢ (𝐴 “ (𝐵 ∪ 𝐶)) = ((𝐴 “ 𝐵) ∪ (𝐴 “ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cun 3974 ran crn 5701 ↾ cres 5702 “ cima 5703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: cnvimassrndm 6183 fnimapr 7005 fnimatpd 7006 naddasslem1 8750 naddasslem2 8751 fodomfi 9378 imafiOLD 9382 domunfican 9389 fiint 9394 fiintOLD 9395 fodomfiOLD 9398 marypha1lem 9502 resunimafz0 14494 dprd2da 20086 dmdprdsplit2lem 20089 uniioombllem3 25639 mbfimaicc 25685 plyeq0 26270 madeoldsuc 27941 addsbday 28068 negsbdaylem 28106 pw2bday 28436 zs12bday 28442 ffsrn 32743 tocyccntz 33137 imadifss 37555 poimirlem1 37581 poimirlem2 37582 poimirlem3 37583 poimirlem4 37584 poimirlem6 37586 poimirlem7 37587 poimirlem11 37591 poimirlem12 37592 poimirlem15 37595 poimirlem16 37596 poimirlem17 37597 poimirlem19 37599 poimirlem20 37600 poimirlem23 37603 poimirlem24 37604 poimirlem25 37605 poimirlem29 37609 poimirlem31 37611 mbfposadd 37627 itg2addnclem2 37632 ftc1anclem1 37653 ftc1anclem5 37657 brtrclfv2 43689 frege77d 43708 frege109d 43719 frege131d 43726 dffrege76 43901 icccncfext 45808 |
Copyright terms: Public domain | W3C validator |