MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaundi Structured version   Visualization version   GIF version

Theorem imaundi 6104
Description: Distributive law for image over union. Theorem 35 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
imaundi (𝐴 “ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))

Proof of Theorem imaundi
StepHypRef Expression
1 resundi 5949 . . . 4 (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
21rneqi 5883 . . 3 ran (𝐴 ↾ (𝐵𝐶)) = ran ((𝐴𝐵) ∪ (𝐴𝐶))
3 rnun 6100 . . 3 ran ((𝐴𝐵) ∪ (𝐴𝐶)) = (ran (𝐴𝐵) ∪ ran (𝐴𝐶))
42, 3eqtri 2756 . 2 ran (𝐴 ↾ (𝐵𝐶)) = (ran (𝐴𝐵) ∪ ran (𝐴𝐶))
5 df-ima 5634 . 2 (𝐴 “ (𝐵𝐶)) = ran (𝐴 ↾ (𝐵𝐶))
6 df-ima 5634 . . 3 (𝐴𝐵) = ran (𝐴𝐵)
7 df-ima 5634 . . 3 (𝐴𝐶) = ran (𝐴𝐶)
86, 7uneq12i 4115 . 2 ((𝐴𝐵) ∪ (𝐴𝐶)) = (ran (𝐴𝐵) ∪ ran (𝐴𝐶))
94, 5, 83eqtr4i 2766 1 (𝐴 “ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cun 3896  ran crn 5622  cres 5623  cima 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634
This theorem is referenced by:  cnvimassrndm  6107  fnimapr  6914  fnimatpd  6915  naddasslem1  8618  naddasslem2  8619  fodomfi  9207  imafiOLD  9211  domunfican  9217  fiint  9222  fodomfiOLD  9225  marypha1lem  9328  resunimafz0  14359  dprd2da  19964  dmdprdsplit2lem  19967  uniioombllem3  25533  mbfimaicc  25579  plyeq0  26163  madeoldsuc  27850  addsbday  27980  negsbdaylem  28018  zs12bday  28414  ffsrn  32735  tocyccntz  33154  imadifss  37708  poimirlem1  37734  poimirlem2  37735  poimirlem3  37736  poimirlem4  37737  poimirlem6  37739  poimirlem7  37740  poimirlem11  37744  poimirlem12  37745  poimirlem15  37748  poimirlem16  37749  poimirlem17  37750  poimirlem19  37752  poimirlem20  37753  poimirlem23  37756  poimirlem24  37757  poimirlem25  37758  poimirlem29  37762  poimirlem31  37764  mbfposadd  37780  itg2addnclem2  37785  ftc1anclem1  37806  ftc1anclem5  37810  brtrclfv2  43884  frege77d  43903  frege109d  43914  frege131d  43921  dffrege76  44096  icccncfext  46047  cycl3grtri  48109
  Copyright terms: Public domain W3C validator