| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaundi | Structured version Visualization version GIF version | ||
| Description: Distributive law for image over union. Theorem 35 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.) |
| Ref | Expression |
|---|---|
| imaundi | ⊢ (𝐴 “ (𝐵 ∪ 𝐶)) = ((𝐴 “ 𝐵) ∪ (𝐴 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resundi 5953 | . . . 4 ⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) | |
| 2 | 1 | rneqi 5890 | . . 3 ⊢ ran (𝐴 ↾ (𝐵 ∪ 𝐶)) = ran ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) |
| 3 | rnun 6106 | . . 3 ⊢ ran ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) = (ran (𝐴 ↾ 𝐵) ∪ ran (𝐴 ↾ 𝐶)) | |
| 4 | 2, 3 | eqtri 2752 | . 2 ⊢ ran (𝐴 ↾ (𝐵 ∪ 𝐶)) = (ran (𝐴 ↾ 𝐵) ∪ ran (𝐴 ↾ 𝐶)) |
| 5 | df-ima 5644 | . 2 ⊢ (𝐴 “ (𝐵 ∪ 𝐶)) = ran (𝐴 ↾ (𝐵 ∪ 𝐶)) | |
| 6 | df-ima 5644 | . . 3 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
| 7 | df-ima 5644 | . . 3 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
| 8 | 6, 7 | uneq12i 4125 | . 2 ⊢ ((𝐴 “ 𝐵) ∪ (𝐴 “ 𝐶)) = (ran (𝐴 ↾ 𝐵) ∪ ran (𝐴 ↾ 𝐶)) |
| 9 | 4, 5, 8 | 3eqtr4i 2762 | 1 ⊢ (𝐴 “ (𝐵 ∪ 𝐶)) = ((𝐴 “ 𝐵) ∪ (𝐴 “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3909 ran crn 5632 ↾ cres 5633 “ cima 5634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 |
| This theorem is referenced by: cnvimassrndm 6113 fnimapr 6926 fnimatpd 6927 naddasslem1 8635 naddasslem2 8636 fodomfi 9237 imafiOLD 9241 domunfican 9248 fiint 9253 fiintOLD 9254 fodomfiOLD 9257 marypha1lem 9360 resunimafz0 14386 dprd2da 19950 dmdprdsplit2lem 19953 uniioombllem3 25462 mbfimaicc 25508 plyeq0 26092 madeoldsuc 27772 addsbday 27900 negsbdaylem 27938 zs12bday 28319 ffsrn 32625 tocyccntz 33074 imadifss 37562 poimirlem1 37588 poimirlem2 37589 poimirlem3 37590 poimirlem4 37591 poimirlem6 37593 poimirlem7 37594 poimirlem11 37598 poimirlem12 37599 poimirlem15 37602 poimirlem16 37603 poimirlem17 37604 poimirlem19 37606 poimirlem20 37607 poimirlem23 37610 poimirlem24 37611 poimirlem25 37612 poimirlem29 37616 poimirlem31 37618 mbfposadd 37634 itg2addnclem2 37639 ftc1anclem1 37660 ftc1anclem5 37664 brtrclfv2 43689 frege77d 43708 frege109d 43719 frege131d 43726 dffrege76 43901 icccncfext 45858 cycl3grtri 47919 |
| Copyright terms: Public domain | W3C validator |