MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaundi Structured version   Visualization version   GIF version

Theorem imaundi 6122
Description: Distributive law for image over union. Theorem 35 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
imaundi (𝐴 “ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))

Proof of Theorem imaundi
StepHypRef Expression
1 resundi 5964 . . . 4 (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
21rneqi 5901 . . 3 ran (𝐴 ↾ (𝐵𝐶)) = ran ((𝐴𝐵) ∪ (𝐴𝐶))
3 rnun 6118 . . 3 ran ((𝐴𝐵) ∪ (𝐴𝐶)) = (ran (𝐴𝐵) ∪ ran (𝐴𝐶))
42, 3eqtri 2752 . 2 ran (𝐴 ↾ (𝐵𝐶)) = (ran (𝐴𝐵) ∪ ran (𝐴𝐶))
5 df-ima 5651 . 2 (𝐴 “ (𝐵𝐶)) = ran (𝐴 ↾ (𝐵𝐶))
6 df-ima 5651 . . 3 (𝐴𝐵) = ran (𝐴𝐵)
7 df-ima 5651 . . 3 (𝐴𝐶) = ran (𝐴𝐶)
86, 7uneq12i 4129 . 2 ((𝐴𝐵) ∪ (𝐴𝐶)) = (ran (𝐴𝐵) ∪ ran (𝐴𝐶))
94, 5, 83eqtr4i 2762 1 (𝐴 “ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3912  ran crn 5639  cres 5640  cima 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651
This theorem is referenced by:  cnvimassrndm  6125  fnimapr  6944  fnimatpd  6945  naddasslem1  8658  naddasslem2  8659  fodomfi  9261  imafiOLD  9265  domunfican  9272  fiint  9277  fiintOLD  9278  fodomfiOLD  9281  marypha1lem  9384  resunimafz0  14410  dprd2da  19974  dmdprdsplit2lem  19977  uniioombllem3  25486  mbfimaicc  25532  plyeq0  26116  madeoldsuc  27796  addsbday  27924  negsbdaylem  27962  zs12bday  28343  ffsrn  32652  tocyccntz  33101  imadifss  37589  poimirlem1  37615  poimirlem2  37616  poimirlem3  37617  poimirlem4  37618  poimirlem6  37620  poimirlem7  37621  poimirlem11  37625  poimirlem12  37626  poimirlem15  37629  poimirlem16  37630  poimirlem17  37631  poimirlem19  37633  poimirlem20  37634  poimirlem23  37637  poimirlem24  37638  poimirlem25  37639  poimirlem29  37643  poimirlem31  37645  mbfposadd  37661  itg2addnclem2  37666  ftc1anclem1  37687  ftc1anclem5  37691  brtrclfv2  43716  frege77d  43735  frege109d  43746  frege131d  43753  dffrege76  43928  icccncfext  45885  cycl3grtri  47946
  Copyright terms: Public domain W3C validator