MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaundi Structured version   Visualization version   GIF version

Theorem imaundi 6149
Description: Distributive law for image over union. Theorem 35 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
imaundi (𝐴 “ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))

Proof of Theorem imaundi
StepHypRef Expression
1 resundi 5995 . . . 4 (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
21rneqi 5936 . . 3 ran (𝐴 ↾ (𝐵𝐶)) = ran ((𝐴𝐵) ∪ (𝐴𝐶))
3 rnun 6145 . . 3 ran ((𝐴𝐵) ∪ (𝐴𝐶)) = (ran (𝐴𝐵) ∪ ran (𝐴𝐶))
42, 3eqtri 2760 . 2 ran (𝐴 ↾ (𝐵𝐶)) = (ran (𝐴𝐵) ∪ ran (𝐴𝐶))
5 df-ima 5689 . 2 (𝐴 “ (𝐵𝐶)) = ran (𝐴 ↾ (𝐵𝐶))
6 df-ima 5689 . . 3 (𝐴𝐵) = ran (𝐴𝐵)
7 df-ima 5689 . . 3 (𝐴𝐶) = ran (𝐴𝐶)
86, 7uneq12i 4161 . 2 ((𝐴𝐵) ∪ (𝐴𝐶)) = (ran (𝐴𝐵) ∪ ran (𝐴𝐶))
94, 5, 83eqtr4i 2770 1 (𝐴 “ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cun 3946  ran crn 5677  cres 5678  cima 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689
This theorem is referenced by:  cnvimassrndm  6151  fnimapr  6975  naddasslem1  8692  naddasslem2  8693  imafi  9174  domunfican  9319  fiint  9323  fodomfi  9324  marypha1lem  9427  resunimafz0  14403  dprd2da  19911  dmdprdsplit2lem  19914  uniioombllem3  25101  mbfimaicc  25147  plyeq0  25724  madeoldsuc  27376  negsbdaylem  27527  fnimatp  31897  ffsrn  31949  tocyccntz  32298  imadifss  36458  poimirlem1  36484  poimirlem2  36485  poimirlem3  36486  poimirlem4  36487  poimirlem6  36489  poimirlem7  36490  poimirlem11  36494  poimirlem12  36495  poimirlem15  36498  poimirlem16  36499  poimirlem17  36500  poimirlem19  36502  poimirlem20  36503  poimirlem23  36506  poimirlem24  36507  poimirlem25  36508  poimirlem29  36512  poimirlem31  36514  mbfposadd  36530  itg2addnclem2  36535  ftc1anclem1  36556  ftc1anclem5  36560  brtrclfv2  42468  frege77d  42487  frege109d  42498  frege131d  42505  dffrege76  42680  icccncfext  44593
  Copyright terms: Public domain W3C validator