| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaundi | Structured version Visualization version GIF version | ||
| Description: Distributive law for image over union. Theorem 35 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.) |
| Ref | Expression |
|---|---|
| imaundi | ⊢ (𝐴 “ (𝐵 ∪ 𝐶)) = ((𝐴 “ 𝐵) ∪ (𝐴 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resundi 5967 | . . . 4 ⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) | |
| 2 | 1 | rneqi 5904 | . . 3 ⊢ ran (𝐴 ↾ (𝐵 ∪ 𝐶)) = ran ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) |
| 3 | rnun 6121 | . . 3 ⊢ ran ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) = (ran (𝐴 ↾ 𝐵) ∪ ran (𝐴 ↾ 𝐶)) | |
| 4 | 2, 3 | eqtri 2753 | . 2 ⊢ ran (𝐴 ↾ (𝐵 ∪ 𝐶)) = (ran (𝐴 ↾ 𝐵) ∪ ran (𝐴 ↾ 𝐶)) |
| 5 | df-ima 5654 | . 2 ⊢ (𝐴 “ (𝐵 ∪ 𝐶)) = ran (𝐴 ↾ (𝐵 ∪ 𝐶)) | |
| 6 | df-ima 5654 | . . 3 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
| 7 | df-ima 5654 | . . 3 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
| 8 | 6, 7 | uneq12i 4132 | . 2 ⊢ ((𝐴 “ 𝐵) ∪ (𝐴 “ 𝐶)) = (ran (𝐴 ↾ 𝐵) ∪ ran (𝐴 ↾ 𝐶)) |
| 9 | 4, 5, 8 | 3eqtr4i 2763 | 1 ⊢ (𝐴 “ (𝐵 ∪ 𝐶)) = ((𝐴 “ 𝐵) ∪ (𝐴 “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3915 ran crn 5642 ↾ cres 5643 “ cima 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: cnvimassrndm 6128 fnimapr 6947 fnimatpd 6948 naddasslem1 8661 naddasslem2 8662 fodomfi 9268 imafiOLD 9272 domunfican 9279 fiint 9284 fiintOLD 9285 fodomfiOLD 9288 marypha1lem 9391 resunimafz0 14417 dprd2da 19981 dmdprdsplit2lem 19984 uniioombllem3 25493 mbfimaicc 25539 plyeq0 26123 madeoldsuc 27803 addsbday 27931 negsbdaylem 27969 zs12bday 28350 ffsrn 32659 tocyccntz 33108 imadifss 37596 poimirlem1 37622 poimirlem2 37623 poimirlem3 37624 poimirlem4 37625 poimirlem6 37627 poimirlem7 37628 poimirlem11 37632 poimirlem12 37633 poimirlem15 37636 poimirlem16 37637 poimirlem17 37638 poimirlem19 37640 poimirlem20 37641 poimirlem23 37644 poimirlem24 37645 poimirlem25 37646 poimirlem29 37650 poimirlem31 37652 mbfposadd 37668 itg2addnclem2 37673 ftc1anclem1 37694 ftc1anclem5 37698 brtrclfv2 43723 frege77d 43742 frege109d 43753 frege131d 43760 dffrege76 43935 icccncfext 45892 cycl3grtri 47950 |
| Copyright terms: Public domain | W3C validator |