| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaundi | Structured version Visualization version GIF version | ||
| Description: Distributive law for image over union. Theorem 35 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.) |
| Ref | Expression |
|---|---|
| imaundi | ⊢ (𝐴 “ (𝐵 ∪ 𝐶)) = ((𝐴 “ 𝐵) ∪ (𝐴 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resundi 5948 | . . . 4 ⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) | |
| 2 | 1 | rneqi 5883 | . . 3 ⊢ ran (𝐴 ↾ (𝐵 ∪ 𝐶)) = ran ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) |
| 3 | rnun 6098 | . . 3 ⊢ ran ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) = (ran (𝐴 ↾ 𝐵) ∪ ran (𝐴 ↾ 𝐶)) | |
| 4 | 2, 3 | eqtri 2752 | . 2 ⊢ ran (𝐴 ↾ (𝐵 ∪ 𝐶)) = (ran (𝐴 ↾ 𝐵) ∪ ran (𝐴 ↾ 𝐶)) |
| 5 | df-ima 5636 | . 2 ⊢ (𝐴 “ (𝐵 ∪ 𝐶)) = ran (𝐴 ↾ (𝐵 ∪ 𝐶)) | |
| 6 | df-ima 5636 | . . 3 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
| 7 | df-ima 5636 | . . 3 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
| 8 | 6, 7 | uneq12i 4119 | . 2 ⊢ ((𝐴 “ 𝐵) ∪ (𝐴 “ 𝐶)) = (ran (𝐴 ↾ 𝐵) ∪ ran (𝐴 ↾ 𝐶)) |
| 9 | 4, 5, 8 | 3eqtr4i 2762 | 1 ⊢ (𝐴 “ (𝐵 ∪ 𝐶)) = ((𝐴 “ 𝐵) ∪ (𝐴 “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3903 ran crn 5624 ↾ cres 5625 “ cima 5626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 |
| This theorem is referenced by: cnvimassrndm 6105 fnimapr 6910 fnimatpd 6911 naddasslem1 8619 naddasslem2 8620 fodomfi 9219 imafiOLD 9223 domunfican 9230 fiint 9235 fiintOLD 9236 fodomfiOLD 9239 marypha1lem 9342 resunimafz0 14370 dprd2da 19941 dmdprdsplit2lem 19944 uniioombllem3 25502 mbfimaicc 25548 plyeq0 26132 madeoldsuc 27817 addsbday 27947 negsbdaylem 27985 zs12bday 28379 ffsrn 32685 tocyccntz 33099 imadifss 37577 poimirlem1 37603 poimirlem2 37604 poimirlem3 37605 poimirlem4 37606 poimirlem6 37608 poimirlem7 37609 poimirlem11 37613 poimirlem12 37614 poimirlem15 37617 poimirlem16 37618 poimirlem17 37619 poimirlem19 37621 poimirlem20 37622 poimirlem23 37625 poimirlem24 37626 poimirlem25 37627 poimirlem29 37631 poimirlem31 37633 mbfposadd 37649 itg2addnclem2 37654 ftc1anclem1 37675 ftc1anclem5 37679 brtrclfv2 43703 frege77d 43722 frege109d 43733 frege131d 43740 dffrege76 43915 icccncfext 45872 cycl3grtri 47935 |
| Copyright terms: Public domain | W3C validator |